129 resultados para glucose regulated protein 78
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We studied glucose homeostasis in rat pups from darns fed on a normal-protein (170 g/kg) (NP) diet or a diet containing 60 g protein/kg (LP) during fetal life and the suckling period. At birth, total serum protein, serum albumin and serum insulin levels were similar in both groups. However, body weight and serum glucose levels in LP rats were lower than those in NP rats. At the end of the suckling period (28 d of age), total serum protein, serum albumin and serum insulin were significantly lower and the liver glycogen and serum free fatty acid levels were significantly higher in LP rats compared with NP rats. Although the fasting serum glucose level was similar in both groups, the area under the blood glucose concentration curve after a glucose load was higher for NP rats (859 (SEM 58) mmol/l per 120 min for NP rats v. 607 (SEM 52) mmol/l per 120 min for LP rats; P < 0.005). The mean post-glucose increase in insulin was higher for NP rats (30 (SEM 4.7) nmol/l per 120 min for NP rats v. 17 (SEM 3.9) nnol/l per 120 min for LP rats; P < 0.05). The glucose disappearance rate for NP rats(0.7 (SEM 0.1) %/min) was lower than that for LP rats (1.6 (SEM 0.2) %/min; P < 0.001). Insulin secretion from isolated islets (1 h incubation) in response to 16.7 mmol glucose/l was augmented 14-fold in NP rats but only 2.6-fold in LP rats compared with the respective basal secretion (2.8 mmol/l; P <0.001). These results indicate that in vivo as well as in vitro insulin secretion in pups from dams maintained on a LP diet is reduced. This defect may be counteracted by an increase in the sensitivity of target tissues to insulin.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of chronic social stress on growth, energetic substrates and hormones was tested in rainbow trout, Oncorhynchus mykiss. After a 14-day isolation period, the fish were paired for 8 days. In order to expose fish to chronic intermittent social contact during pairing, they were maintained in direct contact with each other during the first day. After that, a black plastic screen partition was introduced in each tank, preventing direct contact between animals. Every day the partition was removed for 30 min, allowing physical interaction between fish. At the end of pairing period, they were isolated again for 13 days. Fish were weighed and blood was sampled frequently during the experiment. Plasma levels of cortisol, growth hormone, glucose, total protein and free amino acids were quantified. Both dominants and subordinates had specific growth rate decreased during the pairing period, but only subordinates increased when the stressor was abolished (dominants: 0.32 +/- 0.21 and 0.24 +/- 0.41, subordinates: -0.77 +/- 0.29 and 0.37 +/- 0.31, respectively). Dominants showed a higher cortisol level one week after pairing condition had been abolished than subordinates (dominants: 56.76 +/- 13.26, subordinates: 31.89 +/- 13.36). We conclude that chronic condition of intermittent social stress represents a stressful condition for animals of both hierarchical ranks and a treatment of one daily short direct contact between conspecifics does not promote habituation in fish, as mentioned for other stressors. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Os autores apresentam revisão geral sobre a fisiopatogenia do trauma, ressaltando os estados de hipereatabolismo e hipermetabolismo, suas consequências nutricionais, com as particularidades do trauma encefálico. São feitas, também, considerações sobre as vias, composição e volumes das dietas enterais a serem administradas a pacientes com trauma agudo encefálico, assim como são apontadas questões a serem melhor elucidadas.
Resumo:
The present study was designed to determine the exercise intensity equivalent to the metabolic aerobic/anaerobic transition of alloxan diabetic rats, through lactate minimum test (LMT), and to evaluate the effects of swimming exercise at this intensity (LM) on the glucose and protein metabolism of these animals. Adult male Wistar rats received alloxan (SD, alloxan-injected rats that remained sedentary) intravenously (30 mg kg(-1) body weight) for diabetes induction. As controls (SC, vehicle-injected rats that remained sedentary), vehicle-injected rats were utilized. Two weeks later, the animals were submitted to oral glucose tolerance test (oGTT) and LMT. After the tests, some of the animals were submitted to swimming exercise training [TC (vehicle-injected rats that performed a 6-week exercise program) and TD (alloxan-injected rats that performed a 6-week exercise program)] for I h day(-1), 5 days week(-1), with an overload equivalent to LM determined by LMT, for 6 weeks. At the end of the experiment, the animals were submitted to a second LMT and oGTT, and blood and skeletal muscle assessments (protein synthesis and degradation in the isolated soleus muscle) were made. The overload equivalent to LM at the beginning of the experiment was lower in the SID group than in the SC group. After training, the overload equivalent to LM was higher in the TC and TD groups than in the SC and SD groups. The blood glucose of TD rats during oGTT was lower than that of SD rats. Protein degradation was higher in the SD group than in other groups. We conclude that LMT was sensitive to metabolic and physiologic alterations caused by uncontrolled diabetes. Training at LM intensity improved aerobic condition and the glucose and protein metabolism of alloxan diabetic rats. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
1. A survey has been carried out on the blood constituents of penguins from the Pygoscellidae family, Pygoscellis antartica, P. papua and P. adeliae, and of skuas (Chataracta maccormicki).2. Glucose, non-protein nitrogen compounds, proteins, lipids and inorganic compounds and the electrophoretic patterns for hemoglobin, serum proteins and lipoproteins were studied.3. The values obtained for glucose partition in the blood, glycosylated hemoglobin and non-protein nitrogen compounds, are discussed.
Resumo:
In order to determine the effect of maternal exercise on maternal nutritional status and fetal growth, young (Y = 45-50 days old) Wistar rats were divided into 4 groups of 5 to 8 animals: control pregnant (CP), control non-pregnant (CNP), exercise-trained (swimming 1 h/day, 5 days/week, for 19 days) pregnant (TP) and exercise-trained non-pregnant (TNP). Four equivalent groups of adult rats (A - 90-100 days old) were also formed. Serum glucose, total protein, albumin, hematocrit and liver glycogen were determined in female rats and pups. There were no statistical differences in serum glucose, total protein and albumin levels, litter size ot birth weight among exercise-trained animals, controls and their respective pups. Hematocrit was significantly lower in pups of exercise-trained young rats than in all other groups (YCP = 38.6 +/- 3.0; YTP = 32.6 +/- 2.1; ACP = 39.0 +/- 2.5; ATP = 39.2 +/- 2.9%). Liver glycogen levels were lower in pregnant than in non-pregnant rats but similar in exercise-trained and control rats of the same age and physiological status (YCNP = 4.1 +/- 0.2; YCP = 2.7 +/- 0.9; YTNP = 4.9 +/- 0.8; YTP = 2.7 +/-0.4; ACNP = 6.1 +/- 0.6; ACP = 3.1 +/- 0.8; ATNP = 6.6 +/- 0.8; ATP = 2.2 +/- 0.9 mg/100 mg). We conclude that pups of adult female rats are spared from the effects of this kind of exercise training during pregnancy. on the other hand, it appears that maternal adaptations to exercise training in young rats are able to preserve only some aspects of pup metabolism.
Resumo:
This work intends to evaluate the effects of oral vanadyl treatment (VOSO 4, 1 mg/mL) in young streptozotocin-diabetic rats during 19 and 29 days. In several times of treatment the rats were monitored to determine body weight, food and water intakes, glycemia, and the urinary excretion of glucose and urea. The animals were killed in the 19(th) and 29(th) days, and the glycemia level was determined again, as well as the weight of pancreas, muscles (Soleus and Extensor digitorum longus - EDL) and adipose tissues (epididymal and retroperitoneal). The results showed that the treatment of young diabetic rats with VOSO 4 promotes the reduction of hyperglycemia (p < 0.01), food (p < 0.01) and water intakes (p < 0.05) and body weight (p < 0.05). Neither the tissues and pancreas weights nor the urinary urea level of the treatment group varied in comparison to the control group. In conclusion, the vanadyl treatment in the studied period is able to reduce the main metabolic alterations often found in diabetes. These data are very useful and important for the future experiments to verify the effects of vanadyl sulfate on muscle protein metabolism in diabetic rats.
Resumo:
Propolis is a natural product collected by honey bees containing, among other biochemical constituents, a variety of flavonoids. Propolis is a folk medicinal employed for treating various diseases. It is alleged to exhibit a broad spectrum of bioactivities. The aim of this study was to evaluate the effect of ethanolic extract of propolis (EEP) of species Plebeia droryana and Scaptotrigonea bipunctata through biochemical parameters. Rats were divided into 4 groups: (G1) untreated; (G2) ethanol treated; (G3) treated EEP of Plebeia droryana; (G4) treated of Scaptotrigonea bipunctata. The EEP (100 mg/kg b. w., daily) was administered orally to the animals, for 30 days. Treatment with EEP for two species showed reduction (p<0,05) in serum alanine aminotransferase, aspartato aminotransferase and alkaline phosphatase activity, compared to control ethanol values. The administration of EEP lowered significantly the serum levels of cholesterol (G3= 48,83±5,7 mg/dL; G4=56,91±6,5 mg/dL) and triacylglycerol (G3=45,17±4,16 mg/dL; G4=46,74± 3,90 mg/dL). The serum concentration of albumin (G3=4,16±0,6 g/dL; G4= 3,61±0,36 g/dL) increased (p<0,05) after the administration of EEP, however, it did not affect total protein and glucose concentration. The data suggest that EEP of two species caused alterations of the biochemical parameters.
Resumo:
The modulatory effects of melatonin (MLT) on maternal and fetal macrophages in diabetic rats and the repercussion of maternal hyperglycemia on fetus-placenta parameters were studied. This was achieved by determining maternal and fetal blood glucose, weight and superoxide release by macrophages. Placental weight, protein, DNA and RNA concentration were also verified. Superoxide levels in macrophages isolated from pregnant healthy rats were higher than those obtained from diabetic animals. Melatonin increased significantly in the macrophages of control animals (18.7 ± 2.8 with MLT compared to 14.2 ± 1.6 without MLT) but decreased with melatonin stimulation in diabetic rats (8.8 ± 1.4 with MLT compared to 12.9 ± 2.1 without MLT). Melatonin significantly decreased superoxide levels in newborns of diabetic mothers (7.3 ± 3.4) compared to those of healthy (14.6 ± 3.5) mothers. Blood glucose levels were significantly higher (p<0.05) in newborn rats of diabetic mothers (108.3 ± 7.8) compared to blood glucose levels in newborn control rats (81.2 ± 10.7). Body weight was significantly higher (p <0.05) in the offspring of rats with alloxan-induced diabetes. No statistical difference (p> 0.05) was observed in the placenta weight, total protein concentration and DNA of rats. The RNA concentration was significantly lower (p <0.05) in the placentas of rats with alloxan-induced diabetes (156.1 ± 71.8), when compared to the concentration of RNA in the placentas of control rats (239.5 ± 77.3). In conclusion, maternal hyperglycemia modified the fetus-placental parameters and melatonin modulated the macrophages activation in maternal and fetal diabetic rats.
Resumo:
Introduction: The practice of moderate-intensity exercise can reduce the risk of infections and improve metabolic aspects of the person. Objective: To investigate the effects of aerobic physical training on endocrine and metabolic aspects, bone and immune systems. Methods: Twenty Wistar rats were divided in two groups: sedentary (SG) and trained group (TG). Training program consisted in swimming, 6 weeks, supporting a workload corresponding to 5% of body weight. At the end of the experiment, were performed counting total and differential leukocyte count and hematocrit. After training period, were analyzed glucose, total protein, triglycerides, cholesterol, liver and muscle samples for the determination of the levels of glycogen, and determination of the tibia length and bone area. All dependent variables were analyzed by one-way analysis of variance (ANOVA) and a significance level of P < 0.05 was used for all comparisons. Results: Hematocrit (%) analyzed showed a significant difference, with higher values ffor TG (54.63 ± 1.41) than for the SG (49.5 ± 1.65). The total leukocyte count was not significantly different, as there was no difference in the differential count. Total cholesterol showed significant decrease in TG (TG = 68.27 ± 13.71 mg/dL; SG = 94.44 ± 28.09), the total protein levels also showed significant reduction (TG = 7.3 ± 0.40 g/dL; SG = 7.74 ± 0.36 g/dL) glucose levels and triglyceride showed no significant differences. The bone length showed significant difference (TG = 40±0.14 mm; SG = 42.10 ± 0.12mm). Tibial area showed a lower value for TG (1.53 ± 0.12cm2) than for SG (1.67 ± 0.18cm2); however, the difference was not statistically significant. Conclusion: It can be concluded that aerobic exercise training is able to produce some unique physiological changes in young rats. There is also the need to prescribe exercises that meet the particular maturational stage of development.
Resumo:
Fetal fluids have different vital functions that sustain both pregnancy and normal parturition. The biochemical composition of amniotic fluid during gestation is not well established; thus the purpose of the present study was to determine the biochemical profile of both amniotic and allantoic fluids from mares during initial, mid, and latter third phases of pregnancy. Samples were collected after slaughter, using allantocentesis and amniocentesis. Sixty samples of fetal fluids were analyzed. Alkaline phosphatase (AP), glucose, total protein (TP), urea, creatinine, Ca, chloride (Cl), Na, and K concentrations were measured using commercially available kits. The AP concentration in amniotic fluid was higher than that in allantoic fluid during the three gestational phases (P < .05). There were no differences between glucose mean values of allantoic and those of amniotic fluids (P < .05). However, glucose values were higher in the allantoic fluid in the last trimester of pregnancy. TP was higher in the amniotic fluid than in allantoic fluid (P < .05). Urea values varied among the phases; however, there were no differences between the amniotic and allantoic fluid values (P > .05). Creatinine values were higher in allantoic fluid (P < .05). Na and Cl concentrations were higher in amniotic fluid (P < .05). However, Ca and K concentrations were higher in the allantoic fluid. © 2013 Elsevier Inc. All rights reserved.