106 resultados para genetic models
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Additive and nonadditive genetic effects on preweaning weight gain (PWG) of a commercial crossbred population were estimated using different genetic models and estimation methods. The data set consisted of 103,445 records on purebred and crossbred Nelore-Hereford calves raised under pasture conditions on farms located in south, southeast, and middle west Brazilian regions. In addition to breed additive and dominance effects, the models including different epistasis covariables were tested. Models considering joint additive and environment (latitude) by genetic effects interactions were also applied. In a first step, analyses were carried out under animal models. In a second step, preadjusted records were analyzed using ordinary least squares (OLS) and ridge regression (RR). The results reinforced evidence that breed additive and dominance effects are not sufficient to explain the observed variability in preweaning traits of Bos taurus x Bos indicus calves, and that genotype x environment interaction plays an important role in the evaluation of crossbred calves. Data were ill-conditioned to estimate the effects of genotype x environment interactions. Models including these effects presented multicolinearity problems. In this case, RR seemed to be a powerful tool for obtaining more plausible and stable estimates. Estimated prediction error variances and variance inflation factors were drastically reduced, and many effects that were not significant under ordinary least squares became significant under RR. Predictions of PWG based on RR estimates were more acceptable from a biological perspective. In temperate and subtropical regions, calves with intermediate genetic compositions (close to 1/2 Nelore) exhibited greater predicted PWG. In the tropics, predicted PWG increased linearly as genotype got closer to Nelore. ©2006 American Society of Animal Science. All rights reserved.
Resumo:
Este trabalho teve como objetivo principal avaliar a importância da inclusão dos efeitos genético materno, comum de leitegada e de ambiente permanente no modelo de estimação de componentes de variância para a característica intervalo de parto em fêmeas suínas. Foram utilizados dados que consistiam de 1.013 observações de fêmeas Dalland (C-40), registradas em dois rebanhos. As estimativas dos componentes de variância foram realizadas pelo método da máxima verossimilhança restrita livre de derivadas. Foram testados oito modelos, que continham os efeitos fixos (grupos de contemporâneo e covariáveis) e os efeitos genético aditivo direto e residual, mas variavam quanto à inclusão dos efeitos aleatórios genético materno, ambiental comum de leitegada e ambiental permanente. O teste da razão de verossimilhança (LR) indicou a não necessidade da inclusão desses efeitos no modelo. No entanto observou-se que o efeito ambiental permanente causou mudança nas estimativas de herdabilidade, que variaram de 0,00 a 0,03. Conclui-se que os valores de herdabilidade obtidos indicam que esta característica não apresentaria ganho genético como resposta à seleção. O efeito ambiental comum de leitegada e o genético materno não apresentaram influência sobre esta característica. Já o ambiental permanente, mesmo sem ter sido significativo o seu efeito pelo LR, deve ser considerado nos modelos genéticos para essa característica, pois sua presença causou mudança nas estimativas da variância genética aditiva.
Resumo:
Complex genetic models and segregation analysis were applied to family data obtained in a hyperendemic goiter area in Brazil. The single locus and Falconer's models did not fit the data. Edward's model showed convergency, but statistical concordance has not been obtained. Although the genetic load model explains statistically the family data, it would be hard to imagine that endemic goiter could be explained by a model where synergism among genetic and environmental factors is not assumed.
Resumo:
Studies investigating the use of random regression models for genetic evaluation of milk production in Zebu cattle are scarce. In this study, 59,744 test-day milk yield records from 7,810 first lactations of purebred dairy Gyr (Bos indicus) and crossbred (dairy Gyr × Holstein) cows were used to compare random regression models in which additive genetic and permanent environmental effects were modeled using orthogonal Legendre polynomials or linear spline functions. Residual variances were modeled considering 1, 5, or 10 classes of days in milk. Five classes fitted the changes in residual variances over the lactation adequately and were used for model comparison. The model that fitted linear spline functions with 6 knots provided the lowest sum of residual variances across lactation. On the other hand, according to the deviance information criterion (DIC) and Bayesian information criterion (BIC), a model using third-order and fourth-order Legendre polynomials for additive genetic and permanent environmental effects, respectively, provided the best fit. However, the high rank correlation (0.998) between this model and that applying third-order Legendre polynomials for additive genetic and permanent environmental effects, indicates that, in practice, the same bulls would be selected by both models. The last model, which is less parameterized, is a parsimonious option for fitting dairy Gyr breed test-day milk yield records. © 2013 American Dairy Science Association.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O conhecimento do genoma pode auxiliar na identificação de regiões cromossômicas e, eventualmente, de genes que controlam características quantitativas (QTLs) de importância econômica. em um experimento com 1.129 suínos resultantes do cruzamento entre machos da raça Meishan e fêmeas Large White e Landrace, foram analisadas as características gordura intramuscular (GIM), em %, e ganho dos 25 aos 90 kg de peso vivo (GP), em g/dia, em 298 animais F1 e 831 F2, e espessura de toucinho (ET), em mm, em 324 F1 e 805 F2. Os animais das gerações F1 e F2 foram tipificados com 29 marcadores microsatélites. Estudou-se a ligação entre os cromossomos 4, 6 e 7 com GIM, ET e GP. Análises de QTL utilizando-se metodologia Bayesiana foram aplicadas mediante três modelos genéticos: modelo poligênico infinitesimal (MPI); modelo poligênico finito (MPF), considerando-se três locos; e MPF combinado com MPI. O número de QTLs, suas respectivas posições nos três cromossomos e o efeito fenotípico foram estimados simultaneamente. Os sumários dos parâmetros estimados foram baseados nas distribuições marginais a posteriori, obtidas por meio do uso da Cadeia de Markov, algoritmos de Monte Carlo (MCMC). Foi possível evidenciar dois QTLs relacionados a GIM nos cromossomos 4 e 6 e dois a ET nos cromossomos 4 e 7. Somente quando se ajustou o MPI, foram observados QTLs no cromossomo 4 para ET e GIM. Não foi possível detectar QTLs para a característica GP com a aplicação dessa metodologia, o que pode ter resultado do uso de marcadores não informativos ou da ausência de QTLs segregando nos cromossomos 4, 6 e 7 desta população. Foi evidenciada a vantagem de se analisar dados experimentais ajustando diferentes modelos genéticos; essas análises ilustram a utilidade e ampla aplicabilidade do método Bayesiano.
Resumo:
The lysogenic capacity of human macrophages facing M. leprae in vitro may be dependent on an important genetic component. Although the familial aggregation of the trait is demonstrated, this is a necessary but not sufficient condition to prove genetic influence. The data do not fit some simple genetic models (autosomal dominant or incompletely dominant gene; dominant or recessive sex-linked gene). The results obtained are consistent with the hypothesis that the macrophages' lysogenic capacity is mainly due to a major gene with variable expressivity. This hypothesis may be too simple to account for the whole variability detected and therefore must be considered a working hypothesis.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this study was to evaluate the use of probit and logit link functions for the genetic evaluation of early pregnancy using simulated data. The following simulation/analysis structures were constructed: logit/logit, logit/probit, probit/logit, and probit/probit. The percentages of precocious females were 5, 10, 15, 20, 25 and 30% and were adjusted based on a change in the mean of the latent variable. The parametric heritability (h²) was 0.40. Simulation and genetic evaluation were implemented in the R software. Heritability estimates (ĥ²) were compared with h² using the mean squared error. Pearson correlations between predicted and true breeding values and the percentage of coincidence between true and predicted ranking, considering the 10% of bulls with the highest breeding values (TOP10) were calculated. The mean ĥ² values were under- and overestimated for all percentages of precocious females when logit/probit and probit/logit models used. In addition, the mean squared errors of these models were high when compared with those obtained with the probit/probit and logit/logit models. Considering ĥ², probit/probit and logit/logit were also superior to logit/probit and probit/logit, providing values close to the parametric heritability. Logit/probit and probit/logit presented low Pearson correlations, whereas the correlations obtained with probit/probit and logit/logit ranged from moderate to high. With respect to the TOP10 bulls, logit/probit and probit/logit presented much lower percentages than probit/probit and logit/logit. The genetic parameter estimates and predictions of breeding values of the animals obtained with the logit/logit and probit/probit models were similar. In contrast, the results obtained with probit/logit and logit/probit were not satisfactory. There is need to compare the estimation and prediction ability of logit and probit link functions.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A total of 15,901 scrotal circumference (SC) records from 5300 Nelore bulls, ranging from 229 to 560 days of age, were used with the objective of estimating (co)variance functions for SC, using random regression models. Models included the fixed effects of contemporary group and age of dam at calving as covariable (linear and quadratic effects). To model the population mean trend, a third order Legendre polynomial on animal age was utilized. The direct additive genetic and animal permanent environmental random effects were modeled by Legendre polynomials on animal age, with orders of fit ranging from 1 to 5. Residual variances were modeled considering 1 (homogeneity of variance) or 4 age classes. Results obtained with the random regression models were compared to multi-trait analysis. (Co)variance estimates using multi-trait and random regression models were similar. The model considering a third- and fifth-order Legendre polynomials for additive genetic and animal permanent environmental effects, respectively, was the most adequate to model changes in variance of SC with age. Heritability estimates for SC ranged from 0.24 (229 days of age) to 0.47 (300 days of age), remained almost constant until 500 days of age (0.52), decreasing thereafter (0.44). In general, the genetic correlations between measures of scrotal circumference obtained from 229 to 560 days of age decreased with increasing distance between ages. For genetic evaluation scrotal circumference could be measured between 400 and 500 days of age. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)