36 resultados para generalized hypergeometric functions

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of the generalized holomorphic functions, HG(Omega), having in mind its strict elements, i.e. those which are in HG(Omega) - H(Omega), as well as the possibility of the existence of hybrid elements, i.e. elements which have, in a part of a domain Omega subset of C-n, the strict behaviour and, in another part of the same domain, the classical behaviour, is carried out in this work. The study of hybrid elements is important in the approach of a concept of generalized domain of holomorphy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Szego polynomials with respect to the weight function w(theta) = e(eta theta)[sin(theta/2)](2 lambda), where eta, lambda is an element of R and lambda > -1/2 are considered. Many of the basic relations associated with these polynomials are given explicitly. Two sequences of para-orthogonal polynomials with explicit relations are also given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We defined generalized Heaviside functions for a variable x in R-n, and for variables (x, t) in R-n x R-m. Then study properties such as: composition, invertibility, and association relation (the weak equality). This work is developed in the Colombeau generalized functions context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The solutions of a large class of hierarchies of zero-curvature equations that includes Toda- and KdV-type hierarchies are investigated. All these hierarchies are constructed from affine (twisted or untwisted) Kac-Moody algebras g. Their common feature is that they have some special vacuum solutions corresponding to Lax operators lying in some Abelian (up to the central term) subalgebra of g; in some interesting cases such subalgebras are of the Heisenberg type. Using the dressing transformation method, the solutions in the orbit of those vacuum solutions are constructed in a uniform way. Then, the generalized tau-functions for those hierarchies are defined as an alternative set of variables corresponding to certain matrix elements evaluated in the integrable highest-weight representations of g. Such definition of tau-functions applies for any level of the representation, and it is independent of its realization (vertex operator or not). The particular important cases of generalized mKdV and KdV hierarchies as well as the Abelian and non-Abelian affine Toda theories are discussed in detail. © 1997 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The negative-dimensional integration method is a technique which can be applied, with success, in usual covariant gauge calculations. We consider three two-loop diagrams: the scalar massless non-planar double-box with six propagators and the scalar pentabox in two cases, where six virtual particles have the same mass, and in the case all of them are massless. Our results are given in terms of hypergeometric functions of Mandelstam variables and also for arbitrary exponents of propagators and dimension D.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present calculations for a nonplanar double box with four massless, massive external, and internal legs propagators. The results are expressed for arbitrary exponents of propagators and dimension in terms of Lauricella's hypergeometric functions of three variables and hypergeometric-like multiple series.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Different mathematical methods have been applied to obtain the analytic result for the massless triangle Feynman diagram yielding a sum of four linearly independent (LI) hypergeometric functions of two variables F-4. This result is not physically acceptable when it is embedded in higher loops, because all four hypergeometric functions in the triangle result have the same region of convergence and further integration means going outside those regions of convergence. We could go outside those regions by using the well-known analytic continuation formulas obeyed by the F-4, but there are at least two ways we can do this. Which is the correct one? Whichever continuation one uses, it reduces a number of F-4 from four to three. This reduction in the number of hypergeometric functions can be understood by taking into account the fundamental physical constraint imposed by the conservation of momenta flowing along the three legs of the diagram. With this, the number of overall LI functions that enter the most general solution must reduce accordingly. It remains to determine which set of three LI solutions needs to be taken. To determine the exact structure and content of the analytic solution for the three-point function that can be embedded in higher loops, we use the analogy that exists between Feynman diagrams and electric circuit networks, in which the electric current flowing in the network plays the role of the momentum flowing in the lines of a Feynman diagram. This analogy is employed to define exactly which three out of the four hypergeometric functions are relevant to the analytic solution for the Feynman diagram. The analogy is built based on the equivalence between electric resistance circuit networks of types Y and Delta in which flows a conserved current. The equivalence is established via the theorem of minimum energy dissipation within circuits having these structures.