9 resultados para gap dynamics
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Questions: We assess gap size and shape distributions, two important descriptors of the forest disturbance regime, by asking: which statistical model best describes gap size distribution; can simple geometric forms adequately describe gap shape; does gap size or shape vary with forest type, gap age or the method used for gap delimitation; and how similar are the studied forests and other tropical and temperate forests? Location: Southeastern Atlantic Forest, Brazil. Methods: Analysing over 150 gaps in two distinct forest types (seasonal and rain forests), a model selection framework was used to select appropriate probability distributions and functions to describe gap size and gap shape. The first was described using univariate probability distributions, whereas the latter was assessed based on the gap area-perimeter relationship. Comparisons of gap size and shape between sites, as well as size and age classes were then made based on the likelihood of models having different assumptions for the values of their parameters. Results: The log-normal distribution was the best descriptor of gap size distribution, independently of the forest type or gap delimitation method. Because gaps became more irregular as they increased in size, all geometric forms (triangle, rectangle and ellipse) were poor descriptors of gap shape. Only when small and large gaps (> 100 or 400m2 depending on the delimitation method) were treated separately did the rectangle and isosceles triangle become accurate predictors of gap shape. Ellipsoidal shapes were poor descriptors. At both sites, gaps were at least 50% longer than they were wide, a finding with important implications for gap microclimate (e.g. light entrance regime) and, consequently, for gap regeneration. Conclusions: In addition to more appropriate descriptions of gap size and shape, the model selection framework used here efficiently provided a means by which to compare the patterns of two different types of forest. With this framework we were able to recommend the log-normal parameters μ and σ for future comparisons of gap size distribution, and to propose possible mechanisms related to random rates of gap expansion and closure. We also showed that gap shape varied highly and that no single geometric form was able to predict the shape of all gaps, the ellipse in particular should no longer be used as a standard gap shape. © 2012 International Association for Vegetation Science.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Neospora caninum is considered in many countries as one of the key abortion agents in cattle. This study aims to investigate the parasite behavior in dairy cattle in the municipality of Avar,, SP, Brazil, where abortions frequently occur. An ELISA was performed to compare two samplings on a total of 615 animals; tests were performed in the same herds with a gap of 3 years. An increase in the percentage of reactive animals was observed, ranging from 21.6% at the first sampling to 38.9% at the second sampling. of the 176 animals tested at both samplings, 61.93% retained a non-reactive status, 15.9% retained a reactive status, 19.88% switched from non-reactive to reactive and 2.27% switched from reactive to non-reactive. of the 100 animals with reproductive disturbances, 50% presented anti-Neospora antibodies, thereby indicating the presence of the protozoa. When comparing cows and their respective female offspring, a predominance of horizontal infection was observed. Moreover, considering the significant percentage of animals that switched from non-reactive to reactive and the abundant presence of dogs among the herds, the N. caninum transmission may be attributed to presence of carnivores.
Resumo:
In the tropical Atlantic Forest, 42 canopy gaps had their areas estimated using four different field methods of measurement: Runkle, Brokaw and Green [Runkle, J.R., 1981. Gap formation in some old-growth forests of the eastern United States. Ecology 62, 1041-1051; Brokaw, N.V.L., 1982. The definition of treefall gap and its effect on measures of forest dynamics. Biotropica 14, 158-160; Green, P.T., 1996. Canopy Gaps in rain forest on Christmas Island, Indian Ocean: size distribution and methods of measurement. J. Trop. Ecol. 12, 427-434] and a new method proposed in this work. It was found that within the same gap delimitation, average gap size varied from 56.0 up to 88.3 m(3) while total sum of gap area varied from 2351.3 to 3707.9 m(3) Differences among all methods and between pairs of method proved to be statistically significant. As a consequence, gap size-class distribution was also different between methods. When one method is held as a standard, deviation on average values of gap size ranged between 11.8 and 59.7% as deviations on single gap size can reach 172.8%. Implications on forest dynamics were expressed by the forest turnover rate that was 24% faster or 15% slower depending on the method adopted for gap measurement. Based on my results and on methods' evaluation, the use of a new method is proposed here for future research involving the measure of gap size in forest ecosystems. Finally, it is concluded that forest comparisons disregarding the influence of different methods of gap measurement should be reconsidered. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Graphene has been one of the hottest topics in materials science in the last years. Because of its special electronic properties graphene is considered one of the most promising materials for future electronics. However, in its pristine form graphene is a gapless semiconductor, which poses some limitations to its use in some transistor electronics. Many approaches have been tried to create, in a controlled way, a gap in graphene. These approaches have obtained limited successes. Recently, hydrogenated graphene-like structures, the so-called porous graphene, have been synthesized. In this work we show, based on ab initio quantum molecular dynamics calculations, that porous graphene dehydrogenation can lead to a spontaneous formation of a nonzero gap two-dimensional carbon allotrope, called biphenylene carbon (BC). Besides exhibiting an intrinsic nonzero gap value, BC also presents well delocalized frontier orbitals, suggestive of a structure with high electronic mobility. Possible synthetic routes to obtain BC from porous graphene are addressed. © 2012 Materials Research Society.
Resumo:
Unzipping carbon nanotubes (CNTs) is considered one of the most promising approaches for the controlled and large-scale production of graphene nanoribbons (GNR). These structures are considered of great importance for the development of nanoelectronics because of its dimensions and intrinsic nonzero band gap value. Despite many years of investigations some details on the dynamics of the CNT fracture/unzipping processes remain unclear. In this work we have investigated some of these process through molecular dynamics simulations using reactive force fields (ReaxFF), as implemented in the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code. We considered multi-walled CNTs of different dimensions and chiralities and under induced mechanical stretching. Our preliminary results show that the unzipping mechanisms are highly dependent on CNT chirality. Well-defined and distinct fracture patterns were observed for the different chiralities. Armchair CNTs favor the creation of GNRs with well-defined armchair edges, while zigzag and chiral ones produce GNRs with less defined and defective edges. © 2012 Materials Research Society.
Resumo:
There are strong uncertainties regarding LAI dynamics in forest ecosystems in response to climate change. While empirical growth & yield models (G&YMs) provide good estimations of tree growth at the stand level on a yearly to decennial scale, process-based models (PBMs) use LAI dynamics as a key variable for enabling the accurate prediction of tree growth over short time scales. Bridging the gap between PBMs and G&YMs could improve the prediction of forest growth and, therefore, carbon, water and nutrient fluxes by combining modeling approaches at the stand level.Our study aimed to estimate monthly changes of leaf area in response to climate variations from sparse measurements of foliage area and biomass. A leaf population probabilistic model (SLCD) was designed to simulate foliage renewal. The leaf population was distributed in monthly cohorts, and the total population size was limited depending on forest age and productivity. Foliage dynamics were driven by a foliation function and the probabilities ruling leaf aging or fall. Their formulation depends on the forest environment.The model was applied to three tree species growing under contrasting climates and soil types. In tropical Brazilian evergreen broadleaf eucalypt plantations, the phenology was described using 8 parameters. A multi-objective evolutionary algorithm method (MOEA) was used to fit the model parameters on litterfall and LAI data over an entire stand rotation. Field measurements from a second eucalypt stand were used to validate the model. Seasonal LAI changes were accurately rendered for both sites (R-2 = 0.898 adjustment, R-2 = 0.698 validation). Litterfall production was correctly simulated (R-2 = 0.562, R-2 = 0.4018 validation) and may be improved by using additional validation data in future work. In two French temperate deciduous forests (beech and oak), we adapted phenological sub-modules of the CASTANEA model to simulate canopy dynamics, and SLCD was validated using LAI measurements. The phenological patterns were simulated with good accuracy in the two cases studied. However, IA/max was not accurately simulated in the beech forest, and further improvement is required.Our probabilistic approach is expected to contribute to improving predictions of LAI dynamics. The model formalism is general and suitable to broadleaf forests for a large range of ecological conditions. (C) 2014 Elsevier B.V. All rights reserved.