12 resultados para fuel oil

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

As a result of increasing global awareness about the importance of the environment, depletion of natural resources and legal pressures for companies to manage their processes in a sustainable manner, ISO 14001 systems have been gaining increasingly more importance in the organizational scenario. These elements are even more critical in emerging nations due to less awareness and fewer demands by governments and the population in relation to environmental issues. Therefore, the main objective of this study is to verify the benefits and difficulties of Environmental Management Systems based on ISO 14001 at industries in the state of São Paulo - Brazil (an emerging country) by conducting a survey to subsidize the proposal for actions in the public, academic and private sectors to promote the use of this standard of reference and strengthen its results in Brazil. A questionnaire was sent to 194 companies from the National Institute of Metrology, Standardization and Industrial Quality database. 69 answered, representing a return rate of 35.36%. The main benefits identified are related to the development of preventive environmental actions, reduction in the consumption of power, water, gas and fuel oil, and a positive influence on other internal management processes. The main difficulties are related to cost increases from ISO 14001 management systems and the constant changes in environmental legislation in Brazil. Some actions are proposed at the end of the analyses to intensify the use and improve the results of this standard, such as changes in government legislation and its collective development and implementation in industries. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reduction of the fuel content of a monoethanolamine nitrate (MEAN) fueled explosive slurry was investigated. The work was performed in three phases. The first one involved the MEAN content reduction in a reference slurry from its initial value of 36 down to 24% by weight, the balance being filled with ammonium nitrate, the least expensive item in the slurry composition. This proved to be successful, leading to an overall cost reduction of 17%, while keeping the overall performance quite satisfactory. The second phase consisted in trying to bring the MEAN content down from 24 to 17%. Although this led to further cost reduction, the formulations, obtained by substituting part of the MEAN content by ammonium nitrate/fuel oil (ANFO), produced unsatisfactory results regarding ignition and densities. In the third phase, the Design of Experiments Technique was used to find formulations displaying not only lower cost, but also acceptable overall performance. This led to a raw material cost reduction ranging from 23 to 26% relative to the initial reference slurry formulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The international energy situation indicates to the depletion of oil reserves in the short term. Brazil, considering its potential, has sought through public policy, encourage the study of alternative forms of energy. Many of these forms are based on sub-products and agricultural products, especially the ethanol industry for fuel purposes. Another alternative of vegetable origin, most recently discussed, would be the production of fuel oil called biodiesel. The study aimed to extract and measure the pulp oil production of macaúba palm [Acrocomia aculeata (Jacq) Lodd. ex Mart], collected in Botucatu (SP). In addition, the qualitative analysis of the pulp and almond oil are determined. The results showed low productivity in oils, compared to the reported for macauba natural populations of Minas Gerais. The qualitative analysis of the macauba pulp shows to be rich in long chain fatty acids, while the almond have significant amounts of lauric acid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fuel cell as molten carbonate fuel cell (MCFC) operates at high temperatures. Thus, cogeneration processes may be performed, generating heat for its own process or for other purposes of steam generation in the industry. The use of ethanol is one of the best options because this is a renewable and less environmentally offensive fuel, and is cheaper than oil-derived hydrocarbons, as in the case of Brazil. In that country, because of technical, environmental, and economic advantages, the use of ethanol by steam reforming process has been the most investigated process. The objective of this study is to show a thermodynamic analysis of steam reforming of ethanol, to determine the best thermodynamic conditions where the highest volumes of products are produced, making possible a higher production of energy, that is, a more efficient use of resources. To attain this objective, mass and energy balances were performed. Equilibrium constants and advance degrees were calculated to get the best thermodynamic conditions to attain higher reforming efficiency and, hence, higher electric efficiency, using the Nernst equation. The advance degree (according to Castellan 1986, Fundamentos da Fisica/Quimica, Editora LTC, Rio de Janeiro, p. 529, in Portuguese) is a coefficient that indicates the evolution of a reaction, achieving a maximum value when all the reactants' content is used of reforming increases when the operation temperature also increases and when the operation pressure decreases. However, at atmospheric pressure (1 atm), the advance degree tends to stabilize in temperatures above 700 degrees C; that is, the volume of supplemental production of reforming products is very small with respect to high use of energy resources necessary. The use of unused ethanol is also suggested for heating of reactants before reforming. The results show the behavior of MCFC. The current density, at the same tension, is higher at 700 degrees C than other studied temperatures such as 600 and 650 degrees C. This fact occurs due to smaller use of hydrogen at lower temperatures that varies between 46.8% and 58.9% in temperatures between 600 and 700 degrees C. The higher calculated current density is 280 mA/cm(2). The power density increases when the volume of ethanol to be used also increases due to higher production of hydrogen. The highest produced powers at 190 mA/cm(2) are 99.8, 109.8, and 113.7 mW/cm(2) for 873, 923, and 973 K, respectively. The thermodynamic efficiency has the objective to show the connection among operational conditions and energetic factors, which are some parameters that describe a process of internal steam reforming of ethanol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fuel cell as MCFC (molten carbonate fuel cell) operate at high temperatures, and due to this issue, cogeneration processes may be performed, sending heat for own process or other purposes as steam generation in an industry. The use of ethanol for this purpose is one of the best options because this is a renewable and less environmentally offensive fuel, and cheaper than oil-derived hydrocarbons (in the case of Brazil). In the same country, because of technical, environmental and economic advantages, the use of ethanol by steam reforming process have been the most investigated process. The objective of this study is to show a thermodynamic analysis of steam reforming of ethanol, to determine the best thermodynamic conditions where are produced the highest volumes of products, making possible a higher production of energy, that is, a most-efficient use of resources. To attain this objective, mass and energy balances are performed. Equilibrium constants and advance degrees are calculated to get the best thermodynamic conditions to attain higher reforming efficiency and, hence, higher electric efficiency, using the Nernst equation. The advance degree of reforming increases when the operation temperature also increases and when the operation pressure decreases. But at atmospheric pressure (1 atm), the advance degree tends to the stability in temperatures above 700°C, that is, the volume of supplemental production of reforming products is very small for the high use of energy resources necessary. Reactants and products of the steam-reforming of ethanol that weren't used may be used for the reforming. The use of non-used ethanol is also suggested for heating of reactants before reforming. The results show the behavior of MCFC. The current density, at same tension, is higher at 700°C than other studied temperatures as 600 and 650°C. This fact occurs due to smaller use of hydrogen at lower temperatures that varies between 46.8 and 58.9% in temperatures between 600 and 700°C. The higher calculated current density is 280 mA/cm 2. The power density increases when the volume of ethanol to be used also increases due to higher production of hydrogen. The highest produced power at 190 mW/cm 2 is 99.8, 109.8 and 113.7 mW/cm2 for 873, 923 and 973K, respectively. The thermodynamic efficiency has the objective to show the connection among operational conditions and energetic factors, which are some parameters that describes a process of internal steam reforming of ethanol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viscosity is a measure fluid resistance to flowing, affecting the fuel spray in the combustion chamber and, by this way, thus the formation of carbon deposits. The analysis of the influence of vegetable oil viscosity in biodiesel seems appropriate, because biodiesel viscosity is a function of vegetable oil. The increase of the fuel viscosity, promoted by biodiesel, has a major impact on the dynamics of jet fuel, increasing its speed and distance of penetration, obtaining therefore an increase in the amount of turbulent movement of the jet and thus an increase in the rate of preparation of the mixture, air-fuel, when adding biodiesel to diesel oil. The negative effect of this higher fuel viscosity is the increase of the wear of the train of gears, cam shaft, and valve push rod of all the injection pumps due to the higher pressure of injection. The viscosity of biodiesel is influenced by the size of its molecule and by the increase of molecule insaturations, is directly related with its origin vegetable oil or fat. This study is a review of the influence of vegetable oils in viscosity of biodiesel. Copyright © 2008 SAE International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fossil fuels such as diesel are being gradually replaced by biodiesel, a renewable energy source, cheaper and less polluting. However, little is known about the toxic effects of this new energy source on aquatic organisms. Thus, we evaluated biochemical biomarkers related to oxidative stress in Nile tilapia (Oreochromis niloticus) after two and seven exposure days to diesel and pure biodiesel (B100) and blends B5 and B20 at concentrations of 0.01 and 0.1mLL -1. The hepatic ethoxyresorufin-O-deethylase activity was highly induced in all groups, except for those animals exposed to B100. There was an increase in lipid peroxidation in liver and gills in the group exposed to the higher concentration of B5. All treatments caused a significant increase in the levels of 1-hydroxypyrene excreted in the bile after 2 and 7d, except for those fish exposed to B100. The hepatic glutathione-S-transferase increased after 7d in animals exposed to the higher concentration of diesel and in the gill of fish exposed to the higher concentration of pure diesel and B5, but decreased for the two tested concentrations of B100. Superoxide dismutase, catalase and glutathione peroxidase also presented significant changes according to the treatments for all groups, including B100. Biodiesel B20 in the conditions tested had fewer adverse effects than diesel and B5 for the Nile tilapia, and can be suggested as a less harmful fuel in substitution to diesel. However, even B100 could activate biochemical responses in fish, at the experimental conditions tested, indicating that this fuel can also represent a risk to the aquatic biota. © 2011 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodiesel fuel is gradually replacing petroleum-based diesel oil use. Despite the biodiesel being considered friendlier to the environment, little is known about its effects in aquatic organisms. In this work we evaluated whether biodiesel exposure can affect oxidative stress parameters and biotransformation enzymes in armored catfish (Pterygoplichthys anisitsi, Loricariidae), a South American endemic species. Thus, fish were exposed for 2 and 7d to 0.01mLL-1 and 0.1mLL-1 of pure diesel, pure biodiesel (B100) and blends of diesel with 5% (B5) and 20% (B20) biodiesel. Lipid peroxidation (malondialdehyde) levels and the activities of the enzymes glutathione S-transferase, superoxide dismutase, catalase and glutathione peroxidase were measured in liver and gills. Also, DNA damage (8-oxo-7, 8-dihydro-2'-deoxyguanosine) levels in gills and 7-ethoxyresorufin-O-deethylase activity in liver were assessed. Pure diesel, B5 and B20 blends changed most of the enzymes tested and in some cases, B5 and B20 induced a higher enzyme activity than pure diesel. Antioxidant system activation in P. anisitsi was effective to counteract reactive oxygen species effects, since DNA damage and lipid peroxidation levels were maintained at basal levels after all treatments. However, fish gills exposed to B20 and B100 presented increased lipid peroxidation. Despite biodiesel being more biodegradable fuel that emits less greenhouse gases, the increased lipid peroxidation showed that biofuel and its blends also represent hazards to aquatic biota. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)