171 resultados para frontal gland
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
is a predominant characteristic, conditioned by the presence of castes with different morphology, ontogeny, and development. The soldier caste is unique among social insects and it is responsible for colony defense. Soldiers belonging to the Nasutitermitinae subfamily are very peculiar, since they may be polymorphic and present a nasus in addition to either developed or vestigial mandibles. The defensive secretions of soldiers of the neotropical Nasutitermitinae have been the aim of several chemical studies, but few data exist concerning the anatomy and histology of the exocrine glands. This article presents a comparative study on the anatomy of the frontal gland of soldiers of several Nasutitermitinae species: Syntermes dirus (Burmeister), Syntermes nanus (Constantino), Constrictotermes cyphergaster (Silvestri), Nasutitermes corniger (Motschulsky) and Velocitermes heteropterus (Silvestri), with emphasis on the ultramorphology and ultrastructure of the frontal tube.
Resumo:
The Nasutitermitinae species are the most diverse and derived of the Isoptera. The phylogeny of this subfamily has been a point of divergence. In an attempt to solve this problem, we propose the use of the morphological features of the head, frontal gland and its associated muscles as phylogenetic characters in some Nasutitermitinae genera. Results found about the head and frontal gland morphology are discussed and suggested to be used in future systematic studies of termites.
Resumo:
The primary function of the soldier caste in the Isoptera is the defense of the termite society. The simplest defense is mechanical with oversized mandibles. Besides the mandibles, some termite soldiers use exocrine glands as a means of chemical defense. These glands produce substances which are toxic and/or repellent to termites enemies. Here we report the only case in the Neotropical fauna of dehiscence of the frontal gland in the soldier caste of the Brazilian termite, Serritermes serrifer (Bates).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC
Resumo:
Termites are eusocial insects that have a peculiar and intriguing system of communication using pheromones. The termite pheromones are composed of a blend of chemical substances and they coordinate different social interactions or activities, including foraging, building, mating, defense, and nestmate recognition. Some of these sociochemicals are volatile, spreading in the air, and others are contact pheromones, which are transmitted by trophallaxis and grooming. Among the termite semiochemicals, the most known are alarm, trail, sex pheromones, and hydrocarbons responsible for the recognition of nestmates. The sources of the pheromones are exocrine glands located all over the termite body. The principal exocrine structures considered pheromone-producing glands in Isoptera are the frontal, mandibular, salivary or labial, sternal, and tergal glands. The frontal gland is the source of alarm pheromone and defensive chemicals, but the mandibular secretions have been little studied and their function is not well established in Isoptera. The secretion of salivary glands involves numerous chemical compounds, some of them without pheromonal function. The worker saliva contains a phagostimulating pheromone and probably a building pheromone, while the salivary reservoir of some soldiers contains defensive chemicals. The sternal gland is the only source of trail-following pheromone, whereas sex pheromones are secreted by two glandular sources, the sternal and tergal glands. To date, the termite semiochemicals have indicated that few molecules are involved in their chemical communication, that is, the same compound may be secreted by different glands, different castes and species, and for different functions, depending on the concentration. In addition to the pheromonal parsimony, recent studies also indicate the occurrence of a synergic effect among the compounds involved in the chemical communication of Isoptera. (C) 2010 Elsevier B.V.
Resumo:
This work presents the structure and ultrastructure of the interrenal gland and chromaffin cells, as well as the morphology of the head kidney of Brycon cephalus, the head kidney is composed of fused bilateral lobes located anterior to the swim bladder and ventrolateral to the spinal column, the parenchyma revealed lympho-haematopoietic tissue, melano-macrophage centres, interrenal gland and chromaffin cells. The interrenal gland consisted of cords or strands of cells grouped around the posterior cardinal vein and their branches. Chromaffin cells are found in small groups, closely associated with the interrenal gland and/or under the endothelium of the posterior cardinal vein. So far, the ultrastructural analysis has revealed only one interrenal cell type which contained abundant smooth endoplasmic reticulum and numerous mitochondria with tubulo-vesicular cristae, characteristic of steroid-producing cells. Two types of chromaffin cells were observed. The first type was characterized by the presence of vesicles with round, strongly electron-dense granules, which were eccentrically located, Such cells were interpreted as noradrenaline cells, Meanwhile, cells which contained smaller vesicles and electron-lucent granules, with a small halo separating the granule from the vesicular limiting membrane, were identified as adrenaline cells.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fluoride has been widely used in dentistry as a caries prophylactic agent. However, there has been some speculation that excess fluoride could cause an impact on genome integrity. In the current study, the potential DNA damage associated with exposure to fluoride was assessed in cells of blood, liver, kidney, thyroid gland and urinary bladder by the single cell gel (comet) assay. Male Wistar rats aging 75 days were distributed into seven groups: Groups 1 (control), 2, 3, 4, 5, 6 and 7 received 0 (deionized water), 10, 20, 40, 60, 80 and 100 mgF/Kg body weight from sodium fluoride (NaF), respectively, by gastrogavage. These groups were killed at 2 h after the administration of the fluoride doses. The level of DNA strand breaks did not increase in all organs evaluated and at all doses of NaF tested, as depicted by the mean tail moment. Taken together, our results suggest that oral exposure to NaF did not result in systemic genotoxic effect in multiple organs related to fluoride toxicity. Since DNA damage is an important step in events leading to carcinogenesis, this study represents a relevant contribution to the correct evaluation of the potential health risk associated with chemical exposure.
Resumo:
ObjectiveExplore the presentation, diagnostic criteria and exocrine gland histopathology of paediatric primary Sjogren's syndrome (PPSjS).MethodsA case series of 8 children is reported and American-European Consensus Group (AECG-2002) criteria were examined, as well as minor labial salivary and lachrymal gland biopsies, which were scored by a pathologist blinded to outcome. For all cases, connective tissue diseases and parotid-related infectious disease were excluded.ResultsAge at onset varied from 5-13 years old; 6 were females, all followed from diagnosis up to the last visit (1-10 years). The main features at presentation were recurrent tender parotid swelling and sialectasis imaging, with decreased salivary function assessed by Tc-99 scintigraphy. Mild sicca symptoms were observed in 4/8 cases. Systemic features, including fatigue, myalgia, arthritis, tenosynovitis, joint contractures, transient Raynaud's and high ESR, were recorded at onset. Autoantibody profile was unremarkable for diagnosis, while lymphocytic infiltration of labial salivary glands and sialectasis were observed in all biopsies (8/8). In lachrymal glands, massive lymphocytic infiltration and lymphocytic gastritis were observed during complementary assessment. Flares were treated with low dose steroids and long-term use of hydroxychloroquine (5/8), although only 318 fulfilled AECG-2002 diagnostic criteria, throughout the disease course.ConclusionPPSjS is rare, slowly progressive and its early presentation is variable. Standardised diagnostic algorithms should include recurrent parotid swelling and early diagnosis should rely mostly on salivary and lachrymal gland histopathology in this age group.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Sialolithiasis of the salivary gland is a benign pathology that occurs most frequently in the submandibular gland because of its anatomic features. Depending on the sialolith size and calcification degree, it can be visible in radiographic examinations. Commonly, patients may experience pain and/or edema, when the ducts are obstructed. The authors report the case of sialolithiasis of the submandibular gland in a 42-year-old, female, white-skinned patient, noticed during routine dental examination. Following diagnosis confirmed by clinical and radiographic examinations, the treatment plan consisted of surgery for removal of the calcified mass. The prognosis is often good, and generally there is no recurrence.
Resumo:
The cholinergic agonist pilocarpine injected intraperitoneally (ip) increases mean arterial pressure (MAP) and superior mesenteric (SM) vascular resistance and reduces submandibular/sublingual gland (SSG) vascular resistance. In the present study, we investigated the effects of electrolytic lesions of the anteroventral third ventricle (AV3V) region on the changes in MAP, SM, and SSG vascular resistances induced by ip pilocarpine. Male Holtzman rats anesthetized with urethane (1.0 g/kg) and chloralose (60 mg/kg) were submitted to sham or electrolytic AV3V lesions and bad pulsed Doppler flow probes implanted around the arteries. Contrary to sham rats, in 1-h and 2-day AV3V-lesioned rats, pilocarpine (4 mu mol/kg) ip decreased MAP (-41 +/- 4 and -26 4 mm Hg, respectively, vs. sham: 19 +/- 4 mm Hg) and SM (-48 +/- 11 and -45 +/- 10%, respectively, vs. sham: 41 +/- 10%) and hindlimb vascular resistances (-65 +/- 32 and -113 +/- 29%, respectively, vs. sham: 19 +/- 29%). In 7-day AV3V-lesioned rats, pilocarpine produced no changes on MAP and SM and hindlimb vascular resistances. Similar to sham rats, pilocarpine reduced SSG vascular resistance 1 h after AV3V lesions (-46 +/- 6%, vs. sham: -40 +/- 6%), but it produced no effect 2 days after AV3V lesions and increased SSG vascular resistance (37 6%) in 7-day AV3V-lesioned rats. The responses to ip pilocarpine were similar in 15-day sham and AV3V-lesioned rats. The cholinergic antagonist atropine methyl bromide (10 nmol) iv slightly increased the pressor response to ip pilocarpine in sham rats and abolished for 40 min the fall in MAP induced by ip pilocarpine in 1-h AV3V-lesioned rats. The results suggest that central mechanisms dependent on the AV3V region are involved in the pressor responses to ip pilocarpine. Although it was impaired 2 and 7 days after AV3V lesions, pilocarpine-induced salivary gland vasodilation was not altered 1 h after AV3V lesions which suggests that this vasodilation is not directly dependent on the AV3V region. (c) 2005 Elsevier B.V. All rights reserved.