67 resultados para food restriction
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Este estudo avaliou o efeito da restrição alimentar e realimentação na reprodução de fêmeas e no crescimento inicial e sobrevivência de larvas de matrinxã, Brycon amazonicus. Matrizes distribuídas em 8 viveiros (15 peixes/tanque) foram alimentadas diariamente (em 4 tanques - G1) e alimentados em ciclos de 3 dias de alimentação seguidos de 2 dias de restrição (em 4 tanques - G2) por 6 meses antes da desova. Na indução à desova, 57% das fêmeas no G1 e 45% no G2 desovaram. Os pesos médios dos oócitos foram 208,1 g (G1) e 131,6 g (G2), sendo os oócitos G2 menores (1,017 ± 0,003 mm) que os oócitos de G1 (1,048 ± 0,002 mm). As taxas de fertilização (71,9 ± 12,6% e 61,2 ± 13,7%) e de eclosão (61,3 ± 33,9% e 67,5 ± 23,4%) entre os G1 e G2 não diferiram. Larvas foram coletadas na eclosão e às 24, 48 e 72 horas de incubação para medida do crescimento e as restantes transferidas para aquários e amostradas 1, 5, 9 e 15 dias depois. Na transferência, as larvas G1 e G2 tinham pesos similares (1,5 ± 0,15 e 1,46 ± 0,07 mg), mas o comprimento das larvas G2 era maior (6,2 ± 0,13 e 6,7 ± 0,14 mm). Ao 9° dia, quando é recomendada a transferência dos juvenis para tanques externos, os juvenis G2 tinham peso (13,6 ± 0,26 e 18,9 ± 0,07 mg) e comprimento (11,8 ± 0,09 e 14,5 ± 0,04 mm) maiores, mas no 15º dia os juvenis G1 eram maiores em peso (90,2 ± 1,19 e 68,6 ± 0,77 mg) e comprimento (18,8 ± 0,16 e 18,5 ± 0,04 mm). Aos 15 dias, a prole das fêmeas submetidas à restrição alimentar apresentou sobrevivência mais alta que a prole das fêmeas alimentadas diariamente (24,7 ± 2,07% e 19,2 ± 1,91%). A restrição alimentar imposta às fêmeas de matrinxã, apesar de reduzir o número de fêmeas que desovaram e a quantidade de oócitos extrusados, não afetou a fertilização e eclosão das larvas e melhorou a sobrevivência final das larvas.
Resumo:
1. This investigation was carried out to study the influence of early quantitative food restriction (40% of ad libitum intake from 7 to 14 d of age) and environmental rearing temperature (thermoneutral, cold and hot) on long bone (tibia, femur and humerus) development in broiler chickens.2. Tibia, femur and humerus were obtained at the ages of 14, 21, 28, 35 and 42 d; and the variables studied were: length and width (mm, expressed as absolute values), bone breaking strength (kgf) and bone weight/bone length index (BW/BL, mg/mm).3. All bone variables increased with bird age. Food restriction reduced bone length and width but did not affect bone weight. High environmental rearing temperature reduced bone length and width at 42 d of age. Bone strength was not affected by environmental temperature but the calculated BW/BL index was reduced by heat exposure.4. The findings suggest that food restriction and high environmental rearing temperature reduce long bone growth; bone breaking strength was affected by bird age but not by food restriction nor rearing ambient temperature.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Several studies have shown alterations in hearts from animals subjected to food restriction (FR). However, few experiments in hearts evaluating pressure overload have been reported. We examined the effects of chronic FR on myocardial function and morphology in spontaneously hypertensive rats (SHR). Sixty-day-old SHR were fed a control (C) or a restricted diet (daily intake reduced to 50% of amount of food consumed by the control group) for 90 days. Myocardial performance was studied in isolated left ventricular (LV) papillary muscle. Food restriction decreased body weight and LV weight; LV weight/body-weight ratio was lower in the food-restricted group (SHR-C, 2.84 +/- 0.21 mg/g; SHR-FR, 2.56 +/- 0.24 mg/g; P <.05). Food restriction did not change arterial systolic blood pressure. Myocyte surface area was lower in the food-restricted group (P <.01). Food restriction induced myocardial ultrastructural alterations including reduced sarcoplasm content, reduced and disorganized myofilaments, disorganized Z line, dilated sarcoplasmic reticulum, and deep infoldings of plasma membrane. Myocardial hydroxyproline concentration was increased in the restricted rats. Peak developed tension (P <.05) and maximum rate of tension development (P <.01) were decreased in the SHR-FR group. In conclusion, myocardium of SHR subjected to chronic FR presents attenuation of hypertrophy development, ultrastructural changes, increased collagen content, and systolic dysfunction. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this study we assessed the mechanical function of isolated left ventricular papillary muscles from 60 day-old male Wistar-Kyoto rats (WKY) subjected to different periods of food restriction (FR). The food-restricted animals (R) were fed 50% of the amount of diet consumed by the ad Libitum-fed rats (C). The cardiac muscles were studied after 30, 60, and 90 days (R-30, R-60 and R-90) of FR. The effect of FR on myocardial collagen concentration was also evaluated. The parameters from the three control groups that were statistically identical were combined and the control pool group (CP) was formed. The left ventricular weight-to-body weight ratio was lower in the R-30 and higher in the R-60 and R-90 in relation to their control groups. Hydroxyproline concentration was higher only in R-90 compared to CP and R-30. Myocardial mechanical function was the same in the C groups. The comparisons between CP and FR groups showed that: the muscles of R-30 presented increased resting tension and maximum rate of tension decline, and decreased velocity of shortening; the muscles of R-60 and R-90 groups showed a prolongation of the time to peak tension (TPT) and the time to peak shortening (TPS); and R-30 had an increased time from peak tension to 50% relaxation (RT1/2). Increases in TPT, TPS, and RT1/2 in groups R-60 and R-90 were significant in relation to R-30. In conclusion, while FR for 30 days produces disparate effects on myocardial performance, FR for 60 and 90 days prolongs the contraction period. The change of relaxation time in R-90 might be related to the increased myocardial collagen content. (C) 2001 Elsevier B.V. All rights reserved.
Resumo:
Cardiac structures, function, and myocardial contractility are affected by food restriction (FR). There are few experiments associating undernutrition with hypertension. The aim of the present study was to analyze the effects of FR on the cardiac response to hypertension in a genetic model of hypertension, the spontaneously hypertensive rat (SHR). Five-month-old SHR were fed a control or a calorie-restricted diet for 90 days. Global left ventricle (LV) systolic function was evaluated in vivo by transthoracic echocardiogram and myocardial contractility and diastolic function were assessed in vitro in an isovolumetrically beating isolated heart (Langendorff preparation). FR reduced LV systolic function (control (mean ± SD): 58.9 ± 8.2; FR: 50.8 ± 4.8%, N = 14, P < 0.05). Myocardial contractility was preserved when assessed by the +dP/dt (control: 3493 ± 379; FR: 3555 ± 211 mmHg/s, P > 0.05), and developed pressure (in vitro) at diastolic pressure of zero (control: 152 ± 16; FR: 149 ± 15 mmHg, N = 9, P > 0.05) and 25 mmHg (control: 155 ± 9; FR: 150 ± 10 mmHg, N = 9, P > 0.05). FR also induced eccentric ventricular remodeling, and reduced myocardial elasticity (control: 10.9 ± 1.6; FR: 9.2 ± 0.9%, N = 9, P < 0.05) and LV compliance (control: 82.6 ± 16.5; FR: 68.2 ± 9.1%, N = 9, P < 0.05). We conclude that FR causes systolic ventricular dysfunction without in vitro change in myocardial contractility and diastolic dysfunction probably due to a reduction in myocardial elasticity.
Resumo:
Food restriction (FR) has been shown to impair myocardial performance. However, the mechanisms behind these changes in myocardial function due to FR remain unknown. Since myocardial L-type Ca2+ channels may contribute to the cardiac dysfunction, we examined the influence of FR on L-type Ca2+ channels. Male 60-day-old Wistar rats were fed a control or a restricted diet (daily intake reduced to 50% of the amount of food consumed by the control group) for 90 days. Myocardial performance was evaluated in isolated left ventricular papillary muscles. The function of myocardial L-type Ca2+ channels was determined by using a pharmacological Ca2+ channel blocker, and changes in the number of channels were evaluated by mRNA and protein expression. FR decreased final body weights, as well as weights of the left and right ventricles. The Ca2+ channel blocker diltiazem promoted a higher blockade on developed tension in FR groups than in controls. The protein content of L-type Ca2+ channels was significantly diminished in FR rats, whereas the mRNA expression was similar between groups. These results suggest that the myocardial dysfunction observed in previous studies with FR animals could be caused by downregulation of L-type Ca2+ channels.
Resumo:
Previous works from our laboratory have revealed that food restriction (FR) promotes discrete myocardial dysfunction in young rats. We examined the effects of FR on cardiac function, in vivo and in vitro, and ultrastructural changes in the heart of middle-aged rats. Twelve-month-old Wistar- Kyoto rats were fed a control (C) or restricted diet (daily intake reduced to 50% of the control group) for 90 days. Cardiac performance was studied by echocardiogram and in isolated left ventricular (LV) papillary muscle by isometric contraction in basal condition, after calcium chloride (5.2 mM) and beta- adrenergic stimulation with isoproterenol (10(-6) M). FR did not change left ventricular function, but increased time to peak tension, and decreased maximum rate of papillary muscle tension development. Inotropic maneuvers promoted similar effects in both groups. Ultrastructural alterations were seen in most FR rat muscle fibers and included, absence and/or disorganization of myofilaments and Z line, hyper-contracted myofibrils, polymorphic and swollen mitochondria with disorganized cristae, and a great quantity of collagen fibrils. In conclusion, cardiac muscle sensitivity to isoproterenol and elevation of extracellular calcium concentration is preserved in middle-aged FR rats. The intrinsic muscle performance depression might be related to morphological damage.
Resumo:
Food restriction (FR) has been shown to promote myocardial dysfunction in rats. The aim of this study was to verify the participation of calcium and beta-adrenergic system on myocardial mechanical alteration in rats submitted to FR. Myocardial performance was studied in isolated left ventricular papillar muscle from young Wistar-Kyoto rats (WKY) submitted to FR or to control diet. The groups subjected to FR were fed 50% less food than the control group for 90 days. Mechanical function was studied in isometric contraction at post-rest contraction of 30 seconds (PRC), calcium chloride concentration 5.20 mM, and beta-adrenergic stimulation with isoproterenol 10(-6) M. FR decreased the body weight, and left and right ventricular weight. In basal condition (1.25 MM of calcium) time to peak tension (TPT) and time from peak tension to 50% relaxation (RT50) were greater in the FR group. Muscle function was. The same in both PRC groups. TPT decrease in both high calcium groups, more in FR rats; RT50 dropped only in FR animals. TPT decreased in both Isoproterenol groups, more intensely in the FR group. This result suggests that food restriction impairs myocardial performance and these changes may be attributed to alterations in the intracellular calcium cycling and beta-adrenergic system. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: the effect of food restriction (FR) on myocardial performance has been studied in normal hearts. Few experiments analyzed the effects of undernutrition on hearts subjected to cardiac overload. The aim of this study was to determine whether chronic FR promotes more significant changes in hypertrophied hearts than in normal hearts. Methods: Myocardial performance was studied in isolated left ventricular papillary muscle from young male spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto rats (WKY) submitted to FR or to control diet. The animals subjected to FR were fed 50% of the amount of food consumed by control groups for 60 days. Isolated muscles were studied while contracting isometrically and isotonically. Results: FR decreased the body weight and the left ventricular weight in both groups. FR increased the left ventricular weight-to-body weight ratio in the WKY rats and tended to decrease this ratio in SHR (P = 0.055). The arterial systolic pressure was greater in SHR than in WKY groups and did not change with FR. In the animals with normal diet, myocardial performance was better in SHR than in WKY. FR increased time to tension to fall from peak to 50% of peak tension and time to peak tension in the WKY rats and time to peak tension in the SHR. Conclusions: FR for 60 days has a trend to attenuate the development of cardiac hypertrophy and does not promote more mechanical functional changes in the hypertrophied myocardium than in the normal cardiac muscle.
Resumo:
The aim of this study was to test the hypothesis that protein-calorie undernutrition decreases myocardial contractility jeopardizing ventricular function, and that ventricular dysfunction can be detected noninvasively. Five-month-old male Wistar-Kyoto rats were fed with regular rat chow ad libitum for 90 days (Control group, n = 14). A second group of rats received 50% of the amount of diet consumed by de control group (Food restricted group, n = 14). Global LV systolic function was evaluated in vivo, noninvasively, by transthoracic echocardiogram. After echocardiographic study, myocardial contractility was assessed in vitro in the isovolumetrically beating isolated heart in eight animals from each group (Langendorff preparation). The in vivo LV fractional shortening showed that food restriction depressed LV systolic function (p < 0.05). Myocardial contractility was impaired as assessed by the maximal rate of rise of LV pressure (+dP/dt), and developed pressure at diastolic pressure of 25 mmHg (p < 0.05). Furthermore, food restriction induced eccentric ventricular remodeling, and reduced myocardial elasticity and LV compliance (p < 0.05). In conclusion, food restriction causes systolic dysfunction probably due to myocardial contractility impairment and reduction of myocardial elasticity. © 2002 Elsevier B.V. All rights reserved.