22 resultados para florencio
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The ionosphere is a major source of systematic error in the GPS observables. As this error is directly proportional to the TEC (Total Electron Content), the quality of GPS positioning (especially with single frequency receivers) can be significantly affected by regular changes of TEC. The ionosphere factor is even more relevant in the Brazilian region, where ionospheric phenomena, such as the Equatorial Anomaly, intensify these variations. Taking the above mentioned factors into account, experiments were conducted in this research to evaluate the daily and seasonal behavior of the TEC and the point positioning with GPS (single frequency) in periods of high and low solar activity in the Brazilian region. The results showed a direct correlation between the decrease in electrons density in the ionosphere (period of low solar activity) and improvement in positioning accuracy, as well as a large influence of Equatorial Anomaly on the results of point positioning.
Resumo:
Metals with a bcc crystalline structure such as Ti-13V-11Cr-3Al alloys have their physical properties significantly changed through the addition of interstitial elements such as oxygen and nitrogen. These metals can dissolve substantial amounts of interstitial elements forming solid solutions. Mechanical spectroscopy measurements constitute a powerful tool for studying interactions of these interstitial elements with other elements that make up the alloy. From these measurements, it is possible to obtain information regarding diffusion, interstitial concentration, interaction between interstitials, and other imperfections of the crystalline lattice, In this paper, Ti-13V-11Cr-3Al alloys with several amount of nitrogen, in a solid solution, were studied using mechanical spectroscopy (internal friction) measurements. The results presented complex internal friction spectra which were resolved in a series of constituent Debye peaks corresponding to different interactions and interstitial diffusion coefficients. Pre-exponential factors and activation energies were calculated for nitrogen in theses alloys.
Resumo:
The scientific and technological development in the area of new materials contributed to several applications of niobium and its alloys in nuclear power plants as well as in aerospace, aeronautics, automobile and naval industries. This paper presents the interstitial diffusion coefficients of nitrogen in solid solution in the Nb-1.0wt%Zr alloy using internal friction measurements obtained by mechanical spectroscopy, which uses a torsion pendulum operating at an oscillation frequency between 1.0 Hz and 10.0 Hz. The temperature range varies from 300K to 700K, at a heating rate of 1 K/min and vacuum better than 2 x 10(-6) Torr. The results showed an increase of the interstitial diffusion coefficient of nitrogen that was correlated with configurational considerations for the octahedral interstitials.
Resumo:
The mechanical properties of metals with a body-centered cubic (bcc) structure, such as Nb, Ta, V, and their alloys, are modified with the introduction of interstitial impurities, such as O, N, C, or H. These metals can dissolve great amounts of O and N, for example, to form solid solutions. The interstitial solute atoms (ISA) in metals with a bcc structure occupy octahedral sites and cause local distortion with tetragonal symmetry. So ISA in these metals forms an elastic dipole that can align along one of the three cubic axis of the crystal. In the present paper, the torsion pendulum technique was employed for the investigation of various interactions among the metallic matrix and different interstitial solutes in the Nb-46wt%Ti alloy. From the relaxation spectra, we obtained the diffusion coefficients, pre-exponential factors, and activation energies for nitrogen in the Nb-46wt%Ti alloy.
Resumo:
The mechanical properties of metals with bcc structure, such as niobium and its alloys, have changed significantly with the introduction of heavy interstitial elements. These interstitial elements (nitrogen, for example), present in the alloy, occupy octahedral sites and constitute an elastic dipole of tetragonal symmetry and might produce anelastic relaxation. This article presents the effect of nitrogen on the anelastic properties of Nb-1.0 wt% Zr alloys, measured by means of mechanical spectroscopy using a torsion pendulum. The results showed complex anelastic relaxation structures, which were resolved into their constituent peaks, representing each relaxation process. These processes are due to stress-induced ordering of the interstitial elements around the niobium and zirconium of the alloy.
Resumo:
Anelastic relaxation measurements were performed in a Nb-46wt%Ti alloy, in the temperature range of 300 to 700 K, using a torsion pendulum operating at an oscillating frequency near 2.0 Hz. The samples were measured in different conditions: cold worked, annealed in ultra-high vacuum and doped with several quantities of nitrogen. The relaxation spectra obtained were resolved into their component peaks, corresponding to the different kinds of interaction of the interstitial solutes with the metallic matrix. The relaxation parameters of each process were calculated using Debye's elementary peaks.
Resumo:
Metals that present bcc crystalline structure, when receiving addition of interstitial atoms as oxygen, nitrogen, hydrogen and carbon, undergo significant changes in their physical properties, being able to dissolve great amounts of those interstitial elements, thus forming solid solutions. Niobium and most of its alloys possess bcc crystalline structure and, as Brazil is the largest world exporter of this metal, it is fundamental to understand the interaction mechanisms between interstitial elements and niobium or its alloys. In this paper, mechanical spectroscopy (internal friction) measurements were performed in Nb-2.0wt%Ti alloys containing nitrogen in solid solution. The experimental results presented complex internal friction spectra and with the addition of substitutional solute, it was observed interactions between the two types of solutes (substitutional and interstitial), considering that the random distribution of the interstitial atoms was affected by the presence of substitutional atoms. Interstitial diffusion coefficients, pre-exponential factors and activation energies were calculated for nitrogen in the Nb-2.0wt%Ti alloys.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Measurements of internal friction as a function of temperature were carried out in samples of mobium containing different amounts of interstitial solutes (oxygen and nitrogen) and one sample of mobium containing initially only nitrogen as interstitial solute. The experimental spectra of internal friction as a function of temperature were obtained with a torsion pendulum of the inverted Ke-type and resolved, using the method of successive subtraction, into a series of constituent Debye peaks corresponding to different interactions. For each relaxation process it was possible to obtain the height (Q(max)(-1)) and temperature (T-p) of the peak, the activation energy (E) and the relaxation time (t(o)). The height, shape and temperature of these peaks depend on the concentration of interstitial elements. The observed peaks were associated with matrix-interstitial (Nb-O, Nb-N) and interstitial-interstitial (O-N) interaction processes. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Internal friction measurements were made in the Nb-Ti alloy containing 0.3 wt. % of Ti, doped with various quantities of oxygen (0.04 to 0.08 wt. %) utilizing a torsion pendulum. These measurements were performed in the temperature range of 300 K to 700 K with the oscillation frequency about 1.0 Hz. The experimental results showed relaxation peaks due the stress induced ordering of oxygen atom and pairs of oxygen atom around the niobium atoms (metallic matrix) and around titanium atoms (substitutional solute).
Resumo:
We have measured internal friction and frequency as a function of temperature in molybdenum containing oxygen and nitrogen in solid solution. These measurements were performed by a torsion pendulum operating in the temperature range of 300 K to 700 K with oscillation frequency about 1.0 Hz. The results showed the complex relaxation process identifying the stress induced ordering of oxygen and nitrogen atom around the molybdenum atoms of the metallic matrix.
Resumo:
Internal friction and frequency measurements as a function of temperature have been carried out in Nb and Nb-Zr policrystalline samples, using a torsion pendulum in the temperature range between 300K and 700K the heating rate was 1K/min and the pressure was kept better than 5x10(-3) mbar. Metals with bce lattice containing solute atoms dissolved interstitially often show anelastic behaviour due to a process know as stress-induced ordering responsible for the appearance of Snoek peaks. In the Nb sample it has been identified two constituent peaks corresponding to the interstitial-matrix interactions (Nb-O and Nb-N), but for the Nb-Zr samples with interstitial solute concentrations very close to those measured for the unalloyed Nb, it was not observed any mechanical relaxation peaks due to the presence of oxygen and nitrogen in solid solution.
Resumo:
In the last 50 years several studies have been made to understand the relaxation mechanisms of the heavy interstitial atoms present in transition metals and their alloys. Internal friction measurements have been carried out in a Nb-Ti alloy containing 3.1 at.% of Ti produced by the Materials Department of Chemical Engineering Faculty of Lorena (Brazil), with several quantities of oxygen in solid solution using a torsion pendulum. These measurements have been performed by a torsion pendulum in the temperature range from 300 to 700 K with an oscillation frequency between 0.5 and 10 Hz. The experimental results show complex internal friction spectra that have been resolved, into a series of Debye peaks corresponding to different interactions. For each relaxation process it was possible to obtain the height and temperature of the peak, the activation energy and the relaxation time of the process. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The mechanical properties of metals with bee structure, such as niobium and their alloys, are changed of a significant way by the introduction of heavy interstitial elements. These interstitial elements (oxygen, for example) present in the metallic matrix occupy octahedral sites and constitute an elastic dipole of tetragonal symmetry and might produce anelastic relaxation. Polycrystalline samples of Nb-0.3 wt.% Ti (Nb-Ti) alloy with oxygen in solid solution were analysed. The anelastic spectroscopy measurements had been made in a torsion pendulum, with frequencies in the Hz range, in a temperature range between 300 and 700 K. The results showed thermally activated relaxation structures were identified four relaxation process attributed to stress-induced ordering of single oxygen, nitrogen and carbon atoms around niobium and stress-induced ordering of single oxygen atoms around titanium atoms. (c) 2005 Elsevier B.V. All rights reserved.