102 resultados para fish chromosomes
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In order to improve cytogenetical analyses on fish, especially focusing on delicate and rare species, we have adopted a new in vitro methodology using dead animals. The results obtained from 24 neotropical freshwater and marine fish species demonstrate that chromosomes can be obtained under post-mortem conditions. Significantly, the samples analyzed provided reliable cytogenetical data in nearly all cases. Other advantages of this new methodology are also discussed. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The distribution of 5-methylcytosine (5-MeC) was investigated in fish chromosomes by indirect immunofluorescence using a highly specific 5-MeC monoclonal antibody. Diploid and artificially produced triploid specimens of the pacu fish, Piaractus mesopotamicus, were analyzed. The strong immunofluorescent signals were coincident with the heterochromatic regions of both diploids and triploids in a pattern that matched the C-banding pattern. In the euchromatin, heterogeneous labeling was observed along the chromatids. The weakness of this labeling hindered comparison of the fluorescence labeling of homologous chromosomes from diploid and triploid individuals. However, no striking differences were observed. The possibility that the euchromatin labeling by the 5-MeC antibody is related to the occurrence of mildly repetitive sequences in the genome of Piaractus is discussed.
Resumo:
The chromosome complement of a local population of Astyanax scabripinnis in Brazil was investigated with emphasis on the study of the heterochromatin attached to the A-chromosomes and present in the macro B-chromosome. Analysis after C-banding, silver and CMA(3) staining, incorporation of 5-bromo-2'-deoxyuridine and chromosome digestion with nine restriction endonucleases revealed that the heterochromatin in the B-chromosomes was different from that found in the A-chromosomes. A polymorphism due to the presence of a supernumerary heterochromatic chromosome segment was observed in the population investigated. Some aspects related to the origin of the heterochromatin polymorphism in Astyanax scabripinnis are discussed.
Resumo:
Methods developed since 1976 for harvesting, preparing and banding fish chromosomes are now commonly used for taxonomic and phylogenetic studies, genetic control and chromosome manipulations in fish breeding and in monitoring aquatic pollutants by examining chromosomal aberrations. These studies have chiefly concerned common temperate freshwater species; the same procedures, when applied to marine and coldwater fish, often provide unsatisfactory results, especially in cell culture. A concerted effort should be made in marine fish, and to develop molecular cytogenetic methods to provide a more powerful tool to study chromosomal evolution. © 1991 BRILL.
Resumo:
This paper describes a new technique for preparing mitotic fish chromosomes using short-term in vitro treatment with colchicine. The results show that a large number of good quality metaphases (many suitable for chromosome banding) can be obtained by this technique, which requires an average of 1 h and 30 min for all steps. The procedure considerably reduces the time normally required for chromosome preparations in fish.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The subfamily Tetragonopterinae is composed by a large number of species distributed in South and Central America. This subfamily has many taxonomic and phylogenetic problems, being considered by several authors as an artificial group. With the objective to better understanding the relationships among the components of this fish group, cytogenetic studies were conduced on five species of Tetragonopterinae. Astyanax janeiroensis had 2n=50 chromosomes (6M+14SM+14ST+16A), Hyphessobrycon reticulatus had 2n=50 chromosomes (14M+20SM+16ST), Hollandichthys multifasciatus had 2n=50 chromosomes (10M+12SM+28ST), Ctenobrycon hauxwellianus had 2n=50 chromosomes (10M+6SM+34ST), and Phenacogaster cf. pectinatus had 2n=46 chromosomes (12M+2ST+32A). Only A. janeiroensis had multiple NORs, while all other species had simple NORs. Small heterochromatic blocks were observed in the chromosomes of all species in a pericentromeric position. A. janeiroensis also had some chromosomes with large heterochromatic blocks in a terminal position and a pair with an interstitial block. The karyotypic evolution of each genus is discussed.
Bandamento em cromossomos de peixes: discussão sobre o conceito de compartimentalização cromossômica
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ten type I loci from HSA 10 (IL2RA and VIM), HSA11 (HBB and FSHB) and HSA20 (THBD, AVP/OXT, GNAS1, HCK and TOP1) and two domestic cattle type II loci (CSSM30 and BL42) were FISH mapped to R-banded river buffalo (BBU) and sheep (OAR) chromosomes. IL2RA (HSA 10) maps on BBU 14q13 and OAR13q13, VIM (HSA 10) maps on BBU14q15 and OAR13q15, HBB (HSA11) maps on BBU16q25 and OAR15q23, FSHB (HSA11) maps on BBU16q28 and OAR15q26. THBD (HSA20) maps on BBU 14q15 and OAR13q15 while AVP/OXT. GNAS1, HCK, and TOP I (HSA20) as well as CSSM30 and BL42 map on the same large band of BBU 14q22 and OAR13q22. All loci were mapped on the same homologous chromosomes and chromosome bands of the two species, and these results agree with those earlier reported in cattle homologous chromosomes 15 and 13. respectively, confirming the high degree of both banding and physical map similarities among the bovid species. Indirect comparisons between physical maps achieved on bovid chromosomes and those reported on HSA10, HSA11 and HSA20 were performed. Copyright (C) 2001 S. Karger AG, Basel.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)