79 resultados para firing
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Objectives: This study investigated the effect of porcelain firing on the misfit of implant-supported frameworks and analyzed the influence of preheat treatment on the dimensional alterations.Materials and Methods: Four external-hex cylindrical implants were placed in polyurethane block. Ten frameworks of screw-retained implant-supported prostheses were cast in Pd-Ag using 2 procedures: (1) control group (CG, n = 5): cast in segments and laser welded; and test group (TG, n = 5): cast in segments, preheated, and laser welded. All samples were subjected to firing to simulate porcelain veneering firing. Strain gauges were bonded around the implants, and microstrain values (mu epsilon = 10(-6)epsilon) were recorded after welding (M1), oxidation cycle (M2), and glaze firing (M3). Data were statistically analyzed (2-way analysis of variance, Bonferroni, alpha = 0.05).Results: The microstrain value in the CG at M3 (475.2 mu epsilon) was significantly different from the values observed at M1 (355.6 mu epsilon) and M2 (413.9 mu epsilon). The values at M2 and M3 in the CG were not statistically different. Microstrain values recorded at different moments (M1: 361.6 mu epsilon/M2: 335.3 mu epsilon/M3: 307.2 mu epsilon) did not show significant difference.Conclusions: The framework misfit deteriorates during firing cycles of porcelain veneering. Metal distortion after porcelain veneering could be controlled by preheat treatment. (Implant Dent 2012;21:225-229)
Resumo:
Purpose: To evaluate the effect of the opaque layer firing temperature and mechanical and thermal cycling on the flexural strength of a ceramic fused to commercial cobalt-chromium alloy (Co-Cr). The hypotheses were that higher opaque layer temperatures increase the metal/ceramic bond strength and that aging reduces the bond strength.Materials and Methods: Metallic frameworks (25 x 3 x 0.5 mm(3); ISO 9693) (N = 60) were cast in Co-Cr and airborne-particle abraded (Al(2)O(3): 150 mu m) at the central area of the frameworks (8 x 3 mm(2)) and divided into three groups (N = 20), according to the opaque layer firing temperature: Gr1 (control)-900 degrees C; Gr2-950 degrees C; Gr3-1000 degrees C. The opaque ceramic (Opaque, Vita Zahnfabrick, Bad Sackingen, Germany) was applied, and the glass ceramic (Vita Omega 900, Vita Zahnfabrick) was fired onto it (thickness: 1 mm). While half the specimens from each group were randomly tested without aging (water storage: 37 degrees C/24 hours), the other half were mechanically loaded (20,000 cycles; 50 N load; distilled water at 37 degrees C) and thermocycled (3000 cycles; 5 degrees C to 55 degrees C, dwell time: 30 seconds). After the flexural strength test, failure types were noted. The data were analyzed using 2-way ANOVA and Tukey's test (alpha = 0.05).Results: Gr2 (19.41 +/- 5.5 N) and Gr3 (20.6 +/- 5 N) presented higher values than Gr1 (13.3 +/- 1.6 N) (p = 0.001). Mechanical and thermal cycling did not significantly influence the mean flexural strength values (p > 0.05). Increasing the opaque layer firing temperature improved the flexural bond strength values (p < 0.05). The hypotheses were partially accepted.Conclusion: Increasing of the opaque layer firing temperature improved the flexural bond strength between ceramic fused to Co-Cr alloy.
Resumo:
Objectives. To test the hypothesis that multiple firing and silica deposition on the zirconia surface influence the bond strength to porcelain.Materials and methods. Specimens were cut from yttria-stabilized zirconia blocks and sintered. Half of the specimens (group S) were silica coated (physical vapor deposition (PVD)) via reactive magnetron sputtering before porcelain veneering. The remaining specimens (group N) had no treatment before veneering. The contact angle before and after silica deposition was measured. Porcelain was applied on all specimens and submitted to two (N2 and S2) or three firing cycles (N3 and S3). The resulting porcelain-zirconia blocks were sectioned to obtain bar-shaped specimens with 1 mm(2) of cross-sectional area. Specimens were attached to a universal testing machine and tested in tension until fracture. Fractured surfaces were examined using optical microscopy. Data were statistically analyzed using two-way ANOVA, Tukey's test (alpha = 0.05) and Weibull analysis.Results. Specimens submitted to three firing cycles (N3 and S3) showed higher mean bond strength values than specimens fired twice (N2 and S2). Mean contact angle was lower for specimens with silica layer, but it had no effect on bond strength. Most fractures initiated at porcelain-zirconia interface and propagated through the porcelain.Significance. The molecular deposition of silica on the zirconia surface had no influence on bond strength to porcelain, while the number of porcelain firing cycles significantly affected the bond strength of the ceramic system, partially accepting the study hypothesis. Yet, the Weibull modulus values of S groups were significantly greater than the m values of N groups. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper, a thermoeconomic functional analysis method based on the Second Law of Thermodynamics and applied to analyze four cogeneration systems is presented. The objective of the developed technique is to minimize the operating costs of the cogeneration plant, namely exergetic production cost (EPC), assuming fixed rates of electricity production and process steam in exergy base. In this study a comparison is made between the same four configurations of part I. The cogeneration system consisting of a gas turbine with a heat recovery steam generator, without supplementary firing, has the lowest EPC. (C) 2004 Published by Elsevier Ltd.
Resumo:
The demand for aesthetic restorations has increased during the last years. Dental ceramics are a successful alternative for some cases because of aesthetics and biocompatibility. Therefore, the aim of this literature review was to present the factors necessary to fabricate all-ceramic restorations with aesthetics similar to natural dentition. A search of English-language peer-review literature was completed using MEDLINE database from 1975 to 2009 including the keywords "aesthetic," "metal-free crown," "all-ceramic," and "color." It was observed that several factors influence aesthetics of all-ceramic restorations. Color scale, light source during color evaluation, characteristic of core material, color of supporting tooth, presence of root post, and type of cement are clinical factors that may influence color of the restorations. Laboratorial factors as technique for ceramic condensation, thickness, temperature, and number of firing cycles also influence the result of these crowns. Although several clinical and laboratorial factors influence aesthetics of all-ceramic restorations, the aesthetic success and longevity of these restorations depend on the integration with surrounding periodontal tissue.
Resumo:
Purpose: To compare the flexural strength of two glass-infiltrated high-strength ceramics and two veneering glass-ceramics.Materials and Methods: Four ceramic materials were tested: two glass-infiltrated high-strength ceramics used as framework in metal-free restorations [In-Ceram Zirconia IZ (Gr1) and In-Ceram Alumina IA (Gr2)], and two glass-ceramics used as veneering material in metal-free restorations [Vita VM7 (Gr3) and Vitadur-alpha (Gr4)]. Bar specimens (25 x 5 x 2 mm(3)) made from core ceramics, alumina, and zirconia/alumina composites were prepared and applied to a silicone mold, which rested on a base from a gypsum die material. The IZ and IA specimens were partially sintered in an In-Ceram furnace according to the firing cycle of each material, and then were infiltrated with a low-viscosity glass to yield bar specimens of high density and strength. The Vita VM7 and Vitadur-alpha specimens were made from veneering materials, by vibration of slurry porcelain powder and condensation into a two-part brass Teflon matrix (25 x 5 x 2 mm(3)). Excess water was removed with absorbent paper. The veneering ceramic specimens were then removed from the matrix and were fired as recommended by the manufacturer. Another ceramic application and sintering were performed to compensate the contraction of the feldspar ceramic. The bar specimens were then tested in a three-point bending test.Results: The core materials (Gr1: 436.1 +/- 54.8; Gr2: 419.4 +/- 83.8) presented significantly higher flexural strength (MPa) than the veneer ceramics (Gr3: 63.5 +/- 9.9; Gr4: 57.8 +/- 12.7).Conclusion: In-Ceram Alumina and Zirconia were similar statistically and more resistant than VM7 and Vitadur-alpha.
Resumo:
Nesse artigo, são apresentados os trabalhos realizados com o objetivo de verificar se a elevada dispersão dos valores de velocidade de partícula obtidos durante monitoramentos de vibrações decorrentes de desmontes de rocha com a utilização de explosivos, em mineração localizada no município de Limeira (SP), vinculava-se a variações nos tempos dos elementos de retardo dos acessórios de detonação em relação aos nominais. Os experimentos foram realizados em janeiro e junho de 2004. O procedimento adotado para estimar os tempos de retardo de acessórios de detonação não elétricos redundou em resultados que apresentam consistência, necessitando, porém, de estudos mais aprofundados. Os dados obtidos indicam a necessidade de considerar sua ocorrência quando da elaboração de planos de fogo, por suas implicações: ambientais, que inclui aspectos relativos à segurança e econômicas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)