11 resultados para finite temperatures

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We theoretically study many-body excitations in three different quasi-one-dimensional (Q1D) electron systems: (i) those formed on the surface of liquid Helium; (ii) in two coupled semiconductor quantum wires; and (iii) Q1D electrons embedded in polar semiconductor-based quantum wires. Our results show intersubband coupling between higher subbands and the two lowest subbands affecting even the lower energy intersubband plasmons on the liquid Helium surface. Concerning the second system, we show a pronounced extra peak appearing in the intersubband impurity spectral function for temperatures as high as 20 K. We finally show coupled intersubband plasmon-phonon modes surviving for temperatures up to 300 K.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the scattering of heavy-light K and D mesons by nucleons at low energies. The short-distance part of the interaction is described by quark-gluon interchange and the longdistance part is described by a one-meson-exchange model that includes the contributions of vector (ρ, ω) and scalar (σ) mesons. The microscopic quark model incorporates a confining Coulomb potential extracted from lattice QCD simulations and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. The derived effective meson-nucleon potential is used in a Lippmann-Schwinger equation to obtain s-wave phase shifts. Our final aim is to set up a theoretical framework that can be extended to finite temperatures and baryon densities. © 2010 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The critical current and melting temperature of a vortex system are analyzed. Calculations are made for a two-dimensional film at finite temperature with two kinds of periodic pinning: hexagonal and Kagomé. A transport current parallel and perpendicular to the main axis of the pinning arrays is applied and molecular dynamics simulations are used to calculate the vortex velocities to obtain the critical currents. The structure factor and displacements of vortices at zero transport current are used to obtain the melting temperature for both pinning arrays. The critical currents are higher for the hexagonal pinning lattice and anisotropic for both pinning arrays. This anisotropy is stronger with temperature for the hexagonal array. For the Kagomé pinning lattice, our analysis shows a multi stage phase melting; that is, as we increase the temperature, each different dynamic phase melts before reaching the melting temperature. Both the melting temperature and critical currents are larger for the hexagonal lattice, indicating the role for the interstitial vortices in decreasing the pinning strength. © 2012 Springer Science+Business Media New York.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fertility life tables were developed for both Trichogramma pretiosum and Trichogramma acacioi reared on Sitotroga cerealella eggs as an alternative host at five different temperatures. The egg parasitoids were first collected from Nipteria panacea eggs, a lepidopterous pest of avocado. Egg parasitoid females were individualized in small glass vials along with 40 eggs of the host during 24 h for parasitization. For evaluation of the parasitism capacity, a similar procedure was adopted, but cardboards with eggs were replaced every day. The net reproductive rate (Ro), intrinsic rate of increase (rm), finite rate of increase (lambda), and mean generation time (T) were estimated. Temperature affected all parameters for both Trichogramma species. The highest fecundity for both species was observed at 25degreesC. Extreme temperatures such as 15degreesC or 35degreesC negatively affect the development rate of both species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of trimer continuum resonances are considered in the three-body recombination rate of a Bose system at finite energies for large and negative two-body scattering lengths (a). The thermal average of the rate allows to apply our formula to Bose gases at ultra-low temperatures. We found a good quantitative description of the experimental three-body recombination length of cesium atoms to deeply bound molecules up to 500 nK. Consistent with the experimental data, the increase of the temperature moves the resonance peak of the three-body recombination rate to lower values of vertical bar a vertical bar exhibiting a saturation behavior. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional cutoff regularization schemes of the Nambu-Jona-Lasinio model limit the applicability of the model to energy-momentum scales much below the value of the regularizing cutoff. In particular, the model cannot be used to study quark matter with Fermi momenta larger than the cutoff. In the present work, an extension of the model to high temperatures and densities recently proposed by Casalbuoni, Gatto, Nardulli, and Ruggieri is used in connection with an implicit regularization scheme. This is done by making use of scaling relations of the divergent one-loop integrals that relate these integrals at different energy-momentum scales. Fixing the pion decay constant at the chiral symmetry breaking scale in the vacuum, the scaling relations predict a running coupling constant that decreases as the regularization scale increases, implementing in a schematic way the property of asymptotic freedom of quantum chromodynamics. If the regularization scale is allowed to increase with density and temperature, the coupling will decrease with density and temperature, extending in this way the applicability of the model to high densities and temperatures. These results are obtained without specifying an explicit regularization. As an illustration of the formalism, numerical results are obtained for the finite density and finite temperature quark condensate and applied to the problem of color superconductivity at high quark densities and finite temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a finite element numerical solution of free convection in a cavity with side walls maintained at constant but different temperatures. The predictions from the model and the method of solution were validated by comparison with the 'bench mark' solution and Vahl Davis' results and good agreement was found. The present model was used to obtain additional results over a wide range of Rayleigh number (10(3)-10(6)) and L/H ratios varying from 0.1 to 1.0. The predicted stream function patterns, temperature and velocity profiles as well as the mean Nusselt number were presented and discussed. (C) 2000 Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The necessity of adapting the standardized fan models to conditions of higher temperature has emerged due to the growth of concerning referring to the consequences of the gas expelling after the Mont Blanc tunnel accident in Italy and France, where even though, with 100 fans in operation, 41 people died. However, since then, the defied solutions have pointed to aerodynamic disadvantages or have seemed nonappropriate in these conditions. The objective of this work is to present an alternative to the market standard fans considering a new technology in constructing blades. This new technology introduces the use of the stainless steel AISI 409 due to its good adaptation to temperatures higher than 400°C, particularly exposed to temperatures of gas exhaust from tunnels in fire situation. Furthermore, it presents a very good resistance to corrosion and posterior welding and pressing, due to its alloyed elements. The innovation is centered in the process of a deep drawing of metallic shells and posterior welding, in order to keep the ideal aerodynamic superficies for the fan ideal performance. On the other hand, the finite element method, through the elasto-plastic software COSMOS permitted the verification of the thickness and structural stability of the blade in relation to the aerodynamic efforts established in the project. In addition, it is not advisable the fabrication of blades with variable localized thickness not even, non-uniform ones, due to the verified concentration of tensions and the difficulties observed in the forming. In this way, this study recommends the construction of blades with uniform variations of thickness. © 2007 Springer.