9 resultados para extraocular muscle
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The myoneural junctions present in the opossum (Didelphis albiventris) extraocular muscles were studied through histochemical and ultrastructural techniques. Three different types of junction were shown: two single types, 'en grappe' and 'en plaque', present in the middle third of the muscle fibers; and one multiple type, more rare and observed in the distal third of the muscle.
Resumo:
Purpose: To present a technique for filling facial folds by using autologous orbicularis oculi muscle, based on an experimental model. Methods: two studies are presented: (1) an experimental study using 15 albino guinea-pigs from which a strip of the sural triceps muscle was removed and implanted in the subcutaneous tissue of the dorsal area. The animals were sacrificed 7, 30 and 60 days after the implantation, and the material was histologically evaluated. And (2%) an interventional prospective clinical trial carried out on 20 patients referred to blepharoplasty surgery. They received autologous preseptal orbicularis muscle for filling facial folds. The results where evaluated by patients satisfaction and clinical exam. Results: the sural tricep muscle, when implanted in the subcutaneous tissue, resulted in fibrosis. The patients whom received autologous orbicularis muscle implanted for filling facial folds showed that the procedure can be successfully carried out. Conclusions: autologous preseptal orbicularis muscle is a good material for filling facial folds. Cicatricial tissue will be formed on its implantation site, filling the tissue gap that forms the folds on the skin.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The investigation was centered on the morphological features of the conjunctiva-cornea transition (limbus) of the rabbit eye and the proliferative behavior of its epithelium. The eyes were processed for examination with light and electron microscopy, as well as for autoradiography after intravitreal injection of [H-3]thymidine ([H-3]TdR). At the sites of extraocular muscle insertion, the vascularization of the stroma extended to the peripheral cornea, and the limbal epithelium was thin with its basal stratum made up by clear cuboidal cells. In between the muscle insertions, the cuboidal clear cells, as well as the stroma blood vessels; were scarce. At the light microscope level, the basement membrane was distinct in the cornea but not in the limbus or the conjunctiva. Autoradiographs demonstrated that, at the limbus, the basal cells migrated very quickly to the suprabasal region and remained there up to the 28-day interval. Labeled cells were identified in all epithelial layers of the cornea, including the basal one, at 21 and 28 days but not in the limbal basal clear cells. The rate of renewal of conjunctival epithelium was similar to that observed for the transition with scarce clear cells. The high-resolution autoradiographs demonstrated that the basal cuboidal clear limbal cells exhibit a quick renewal and that they are not label-retaining cells. These latter ones were detected all over the corneal epithelium and in the suprabasal layers of the limbus up to 28 days, in physiological conditions, without the need of stimulation by damage to the corneal epithelium.
Resumo:
Introduction: Impacted knife injuries in the maxillofacial region are rare and infrequently reported. In cases of injury involving orbit or eye, these reports are even rarer. Discussion: Damage to the orbital contents may result in a rupture of the globe, extraocular muscle injury, lacrimal gland damage, and others. Orbital foreign bodies are not only difficult to detect, and clinical features vary according to its size, characteristics, shape, penetrating method, and site. In this report, a case of abducens nerve palsy after orbitoethmoidal knife injury is presented. © 2010 Springer-Verlag.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The extraocular muscle fibres of the South-American opossum were determined according to their metabolic profiles using NADH-diaforase, and myofibrilar ATPase after pre-incubation in both acid (pH 4.3) and alkaline (pH 10.4) media. Three muscles were selected to study the arrangement of the fibres (obliquous dorsalis, rectus dorsalis and rectus lateralis muscles). It was demonstrated that they are organized in two layers: the orbital layer composed by small diameter fibres and the global layer with three-times thicker fibres than the former. The global layer has three fibre types: white, red and intermediate; while the orbital layer presents two fibre types, which react differently to the ATPase.
Resumo:
The anatomy of the extraocular muscles was studied in 10 adult opossums (Didelphis albiventris) of both sexes. Eight extraocular muscles were identified: 4 rectus muscles, 2 oblique muscles, the levator palpebrae superioris and the retractor ocular bulbi. The rectus muscles originate very close one to another between the orbital surfaces of the presphenoid and palatine bones. These muscles diverge on the way to their insertion which occurs at about 2 mm from the limbus. The levator palpebrae superioris originates with the dorsal rectus and is positioned dorsally in relation to it. The retractor ocular bulbi forms a cone which embraces the optic nerve and is located internally in relation to the rectus muscles. The dorsal oblique originates on the presphenoid bone and after a tendinous trajectory through a trochlea on the medial wall of the orbit, inserts into the ocular bulb. The only muscle arising from the anterior orbital floor is the ventral oblique. The main nerve supply for these muscles is the oculomotor, except for the dorsal oblique which is innervated by the trochlear nerve, and the lateral rectus which is innervated by the abducens nerve. The retractor ocular bulbi receives branches from the inferior division of the oculomotor nerve and some branches from the abducens nerve.