11 resultados para eusociality
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Behavioural traits have been used extensively in recent years as an important character source for making phylogenetic inferences. The phylogenetic positions of the members of the Apini subtribe are increasingly being debated, and new characters must be examined. We analysed the presence and absence of certain behavioural patterns, as well as the sequences of some of these patterns, to generate 79 characters. Eleven species comprised the ingroup, and Xylocopini comprised the outgroup. Parsimony analysis showed that the most parsimonious tree was (Euglossina(Bombina(Apina+Meliponina))). This topology is consistent with most studies that use morphological data and the few that use behavioural data, which suggests that advanced eusociality arose only once in a common ancestor of the clade Apina plus Meliponina; however, this hypothesis is inconsistent with our molecular data. Thus we considered behavioural, molecular, and morphological data and recovered the same topology, in which eusociality has a single origin in corbiculate bees.
Resumo:
The eusociality developed in Hymenoptera and Isoptera is driven by an efficient interaction between exocrine glands and jointed appendages, both in close interaction with the environment. In this context, the mandible of ants plays an important role, since, in addition to being the main jointed appendage, it possess glandular functions. As an example we might name the two glands associated with the mandible: the mandibular and the intramandibular glands. The intramandibular gland is found inside the mandible and consists of a hypertrophied secretory epithelium and secretory cells in the mandible's lumen. The secretion of the secretory epithelium is liberated through intracuticular ducts that open at the base of hairs at the mandible's surface. The secretion of the intramandibular gland (epithelium and secretory cells) reacted positively to tests for the detection of polysaccharides and proteins, thus suggesting that it consists of glycoproteins. The ultrastructure of the secretor epithelium presents variations related to the developmental stage of the individual, showing a large number of ribosomes and microvilli close to the cuticle in young individuals, while in the older specimens it was possible to note the formation of ail intracellular reservoir. These variations of secretory epithelium, as also the interaction between the cellular groups inside the mandible, are important information about this gland in leaf-cutting ants. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The mandibles of bees contain two types of tegumental glands whose function is not clear, despite the hypotheses put forward by several researchers. Although these glands have been found in all the bee species studied so far, observations have been confined mostly to workers of eusocial species in the forager phase. The work reported here involved a study of the morphology of the glands of newly emerged, nurse and forager workers, virgin and fecundated queens, and newly emerged and sexually mature males of Scaptotrigona postica, seeking to identify changes that may be linked to the bees life phase. Our findings indicate that the two types of glands are present in the species but not in all life phases or individual classes. The glands consisting of class I cells, the epithelial glands are present only in forager workers and fecundated queens. Glands of type III cells were studied in detail, and gland size was estimated from histological sections. The degree of development of the glands varies according to individual classes and life phases, suggesting different functions during the individuals life and from one individual to another. © Koninklijke Brill NV, Leiden, 2012.
Resumo:
DNA methylation plays an important role in the epigenetic control of developmental and behavioral plasticity, with connections to the generation of striking phenotypic differences between castes (larger, reproductive queens and smaller, non-reproductive workers) in honeybees and ants. Here, we provide the first comparative investigation of caste- and life stage-associated DNA methylation in several species of bees and vespid wasps displaying different levels of social organization. Our results reveal moderate levels of DNA methylation in most bees and wasps, with no clear relationship to the level of sociality. Strikingly, primitively social Polistes dominula paper wasps show unusually high overall DNA methylation and caste-related differences in site-specific methylation. These results suggest DNA methylation may play a role in the regulation of behavioral and physiological differences in primitively social species with more flexible caste differences. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks.