68 resultados para ethanol as fuel
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The purpose of this paper is to describe the benefits of sugar cane ethanol in Brazil, appointing the productivity of this type of fuel based on hectares of plantation, its carbon dioxide cycle and the contribution to reduce the greenhouse effect. In the following step the uses of ethanol for hydrogen production by steam reforming is analyzed and some comparison with natural gas steam reforming is performed. The sugar cane industry in Brazil, in a near future, in the hydrogen era, could be modified according to our purpose, since besides the production of sugar, and ethylic and anhydric alcohol, Brazilian sugar cane industry will also be able to produce biohydrogen.Fuel cells appear like a promising technology for energy generation. Among several technologies in the present, the PEMFC (proton exchange membrane fuel cell) is the most appropriate for vehicles application, because it combines durability, high power density, high efficiency, good response and it works at relatively low temperatures. Besides that it is easy to turn it on and off and it is able to support present vibration in vehicles. A PEMFC's problem is the need of noble catalysts like platinum. Another problem is that CO needs to be in low concentration, requiring a more clean hydrogen to avoid fuel cell deterioration.One part of this paper was developed in Stockholm, where there are some buses within the CUTE (clean urban transport for Europe) project that has been in operation with FC since January 2004. Another part was developed in Guaratingueta, Brazil. Brazil intends to start up a program of FC buses. As conclusion, this paper shows the economical analysis comparing buses moved by fuel cells using hydrogen by different kinds of production. Electrolyze with wind turbine, natural gas steam reforming and ethanol steam reforming. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper describes 2 alternative methodologies for the determination of selected aldehydes (formaldehyde, acetaldehyde, propionaldehyde, acrolein, and benzaldehyde) by capillary electrophoresis (CE), the first approach is based on the formation of aldehyde-bisulfite adducts and employs free solution CE with reversed electroosmotic flow and indirect detection, using 10 mmol/L 3,5-dinitrobenzoic acid (pH 4.5) containing 0.2 mmol/L cetyltrimethylammonium bromide as the electrolyte. This novel methodology showed a fairly good sensitivity to concentration, with detection limits with respect to a single aldehyde on the order of 10-40 mu g/L, a reasonable analysis time (separation was achieved in <8 min), and no need for sample manipulation. A second approach was proposed in which 2,4-dinitrophenylhydrazine derivatives of the aldehydes were detected in a micellar electrolyte medium (20 mmol/L berate buffer containing 50 mmol/L sodium dodecyl sulfate and 15 mmol/L beta-cyclodextrin). This latter methodology included a laborious sample preconcentration step and showed much poorer sensitivity (0.5-2 mg/L detection limit, with respect to a single aldehyde), despite the use of sodium chloride to promote sample stacking. Both methodologies proved adequate to evaluate aldehyde levels in vehicular emissions. Samples from the tailpipe exhaust of a passenger car vehicle without a catalytic converter and operated with an ethanol-based fuel were collected and analyzed; the results showed high levels of formaldehyde and acetaldehyde (0.41-6.1 ppm, v/v). The concentrations estimated by the 2 methodologies, which were not in good agreement, suggest the possibility of striking differences in sample collection efficiency, which was not the concern of this work.
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Química - IQ
Resumo:
In 2001, it was estimated that pesticide used worldwide exceeded 2.27 billion kilograms, over 35%, of which, were herbicides. Brazil is considered one of the leaders in the production of sugarcane and mainly ethanol as fuel. The monoculture of sugarcane requires the usage of a range of pesticides, among these, the herbicides diuron and tebuthiuron. The degradation products most studied (DCA and DCPU) are diuron's, especially for toxicological characteristics of this herbicide that is identified as carcinogen and suspected to be endocrine disruptor in mammals. After optimization of the chromatographic separation using HPLC-UV, the analytical curve was constructed in solvent and subsequently in the matrix (surface water). The extraction method contains the usage of SPE (solid phase extraction) (Strata-X, 200 mg/6 mL), applicating 1L of sample and elution with 5 mL of acetonitrile / methanol (50:50, v/v). Analysis by HPLC/UV was performed in gradient mode, acetonitrile/water (70/30-74/26 by 1 min, 74/26 - 78/22 till 3.2 min, returning to initial conditions and remaining this way until 10 min), 018 column (Phenomenex, 4.6 mm diameter, 250 mm long and 5pm particle size) and detection at 254 nm. Tests F and t were performed to verify the presence of the matrix effect. There was matrix effect to all analytes, ranging from -33% (DCA) and 38% (tebuthiuron). Thereby the method was optimized and validated for analysis of diuron, tebuthiuron, and DCPU DCA in surface water using HPLC/UV. The data obtained show that in order to assure the analytical reliability desired the use of the analytical curves in the matrix for the quantification of these analytes in water is required.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Fuel cell as molten carbonate fuel cell (MCFC) operates at high temperatures. Thus, cogeneration processes may be performed, generating heat for its own process or for other purposes of steam generation in the industry. The use of ethanol is one of the best options because this is a renewable and less environmentally offensive fuel, and is cheaper than oil-derived hydrocarbons, as in the case of Brazil. In that country, because of technical, environmental, and economic advantages, the use of ethanol by steam reforming process has been the most investigated process. The objective of this study is to show a thermodynamic analysis of steam reforming of ethanol, to determine the best thermodynamic conditions where the highest volumes of products are produced, making possible a higher production of energy, that is, a more efficient use of resources. To attain this objective, mass and energy balances were performed. Equilibrium constants and advance degrees were calculated to get the best thermodynamic conditions to attain higher reforming efficiency and, hence, higher electric efficiency, using the Nernst equation. The advance degree (according to Castellan 1986, Fundamentos da Fisica/Quimica, Editora LTC, Rio de Janeiro, p. 529, in Portuguese) is a coefficient that indicates the evolution of a reaction, achieving a maximum value when all the reactants' content is used of reforming increases when the operation temperature also increases and when the operation pressure decreases. However, at atmospheric pressure (1 atm), the advance degree tends to stabilize in temperatures above 700 degrees C; that is, the volume of supplemental production of reforming products is very small with respect to high use of energy resources necessary. The use of unused ethanol is also suggested for heating of reactants before reforming. The results show the behavior of MCFC. The current density, at the same tension, is higher at 700 degrees C than other studied temperatures such as 600 and 650 degrees C. This fact occurs due to smaller use of hydrogen at lower temperatures that varies between 46.8% and 58.9% in temperatures between 600 and 700 degrees C. The higher calculated current density is 280 mA/cm(2). The power density increases when the volume of ethanol to be used also increases due to higher production of hydrogen. The highest produced powers at 190 mA/cm(2) are 99.8, 109.8, and 113.7 mW/cm(2) for 873, 923, and 973 K, respectively. The thermodynamic efficiency has the objective to show the connection among operational conditions and energetic factors, which are some parameters that describe a process of internal steam reforming of ethanol.
Resumo:
The present investigation reports the synthesis, characterization, and adsorption properties of a new nanomaterial based on organomodified silsesquioxane nanocages. The adsorption isotherms for CuCl,, CoCl2, ZnCl2, NiCl2, and FeCl3 from ethanol solutions were performed by using the batchwise method. The equilibrium condition is reached very quickly (3 min), indicating that the adsorption sites are well exposed. The results obtained in the flow experiments, showed a recovery of ca. 100% of the metal ions adsorbed in a column packed with 2 g of the nanomaterial, using 5 mL of 1.0 mol L-1 HCl solution as eluent. The sorption-desorption of the metal ions made possible the development of a method for preconcentration and determination of metal ions at trace level in commercial ethanol, used as fuel for car engines. The values determined by recommended method for plants 1, 2, and 3 indicated an amount of copper of 51, 60, and 78 mu g L-1, and of iron of 2, 15, and 13 mu g L-1, respectively. These values are very close to those determined by conventional analytical methods. Thus, these similar values demonstrated the accuracy of the determination by recommended method.
Resumo:
This work presents a methodology for iron determination in fuel ethanol using a modified carbon paste electrode with 1.10 fenantroline/nafion. The electrochemical parameters were optimized for the proposed system and the voltammetric technique of square wave was employed for iron determination. An accumulation time of 5 minutes, such as a 100 mV of pulse magnitude (E(sw)) and frequency (f) of 25 Hz were used as optimized experimental conditions. The modified carbon paste electrode presented linear dependence of amperometric signal with iron concentration in a work range from 6.0x10(-6) until 2.0x10(-5) mol L(-1) of iron, exhibiting a linear correlation coefficient of 0.9884, a detection limit of 2.4 x10(-6) mol L(-1) (n = 3) and amperometric sensibility of 4.5x10(5) mu A/mol L(-1). Analytical curve method was used for iron determination at a commercial fuel sample. Flame atomic absorption spectroscopy was employed as comparative technique.
Resumo:
Cellulose chemically modified with p-aminobenzoic groups, abbreviated as Cel-PAB, was used for preconcentration of copper, iron, nickel, and zinc from ethanol fuel, normally used in Brazil as engine fuel. The surface characteristics and the surface area of the cellulose were obtained before and after chemical modification using FT-IR, elemental analysis, and surface area analysis (B.E.T.). The retention and recovery of the analyte elements were studied by applying batch and column techniques.
Resumo:
This paper describes the preparation of acid carboxymethylcellulose (CMCH), and the results of a study on the adsorption and preconcentration (using batch and flow-through column methods) of Cd(II), Cu(II), Cr(III), Fe(III), Ni(II) and Zn(II) in ethanol medium. The adsorption capacities for each metallic ion were (in mmol g(-1)) Cd(II) = 0.92; Cu(II) = 1.45; Cr(III) = 1.70; Fe(III) = 1.60; Ni(II) = 1.30; and Zn(II) = 1.10. By means of the flow-through method, a recovery of ca. 100% of the metallic ions adsorbed in a column packed with 2 g of CMCH was found when 5.0 mL of 1.0 mol L-1 hydrochloric acid were used as eluent. An enrichment factor of 20 (100 mt solution containing 50 mu g L-1 of the metallic ions, concentrated to 5.0 mt) was obtained by this preconcentration procedure. The sorption-desorption procedure applied allowed the development of a preconcentration and Flame AAS quantification method of metallic ions in fuel ethanol at trace levels.
Resumo:
A solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica (SiAt-SPCPE) was applied to Ni2+ determination in commercial ethanol fuel samples. The proposed method comprised four steps: (1) Ni2+ preconcentration at open circuit potential directly in the ethanol fuel sample, (2) transference of the electrode to an electrochemical cell containing DMG, (3) differential pulse voltammogram registering and (4) surface regeneration by polishing the electrode. The proposed method combines the high Ni2+ adsorption capacity presented by 2-aminothiazole organofunctionalized silica with the electrochemical properties of the Ni(DMG)2 complex, whose electrochemical reduction provides the analytical signal.All experimental parameters involved in the proposed method were optimized. Using a preconcentration time of 20 min, it was obtained a linear range from 7.5 x 10(-9) to 1.0 x 10(-6) mol L-1 with detection limit of 2.0 x 10(-9) mol L-1. Recovery values between 96.5 and 102.4% were obtained for commercial samples spiked with 1.0 mu mol L-1 Ni2+ and the developed electrode was totally stable in ethanolic solutions. The contents of Ni2+ found in the commercial samples using the proposed method were compared to those obtained by graphite furnace atomic absorption spectroscopy by using the F- and t-test. Neither the F- nor t-values exceeded the critical values at 95% confidence level, confirming that there are not statistical differences between the results obtained by both methods. These results indicate that the developed electrode can be successfully employed to reliable Ni2+ determination in commercial ethanol fuel samples without any sample pretreatment or dilution step. (c) 2006 Elsevier B.V. All rights reserved.