79 resultados para epigenetic

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. To assess the expression of TRAIL-R3 and the methylation of a CpG island within the TRAIL-R3 promoter both in cystadenoma tumors and primary and metastatic epithelial ovarian carcinoma (EOC).Methods. RNA was obtained from women with normal ovarian (NO) tissues (n = 18), ovarian serous cystadenoma tumors (n = 11) and EOC (n = 16) using Trizol (R). Quantitative PCR (gRT-PCR) was performed to quantify the relative levels of TRAIL-R3. The methylation frequency of the CpG island in the TRAIL-R3 promoter was assessed using the methylation-specific PCR (MSP) assay after DNA bisulfite conversion. The differences between the groups were evaluated using the chi-square, Student's t, ANOVA, Mann-Whitney U, Wilcoxon or Kruskal-Wallis tests as indicated. The survival rates were calculated using the Kaplan-Meier method.Results. Cystadenoma and metastatic EOC tumors expressed significantly more TRAIL-R3 mRNA than primary EOC tumors. Methylation of the TRAIL-R3 promoter was absent in NO tissues, while hemimethylation of the TRAIL-R3 promoter was frequently found in the neoplasia samples with 45.4% of the cystadenoma tumors, 8.3% of the primary EOC samples and 11.1% of the metastatic EOC samples showing at least partial methylation (p = 0.018). Neither the expression of TRAIL-R3 nor alterations in the methylation profile were associated to cumulative progression-free survival or the overall survival in EOC patients.Conclusions. Primary EOC is associated to a lower TRAIL-R3 expression, which leads to a better understanding of the complex disease and highlighting potential therapeutic targets. Promoter DNA methylation was not related to this finding, suggesting the presence of other mechanisms to transcriptional control. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aberrant methylation of seven potential binding sites of the CTCF factor in the differentially methylated region upstream of the H19 gene (H19-DMR) has been suggested as critical for the regulation of IGF2 and H19 imprinted genes. In this study, we analyzed the allele-specific methylation pattern of CTCF binding sites 5 and 6 using methylationsensitive restriction enzyme PCR followed by RFLP analysis in matched tumoral and lymphocyte DNA from head-and-neck squamous cell carcinoma (HNSCC) patients, as well as in lymphocyte DNA from control individuals who were cancer-free. The monoallelic methylation pattern was maintained in CTCF binding site 5 in 22 heterozygous out of 91 samples analyzed. Nevertheless, a biallelic methylation pattern was detected in CTCF binding site 6 in a subgroup of HNSCC patients as a somatic acquired feature of tumor cells. An atypical biallelic methylation was also observed in both tumor and lymphocyte DNA from two patients, and at a high frequency in the control group (29 out of 64 informative controls). Additionally, we found that the C/T transition detected by HhaI RFLP suppressed one dinucleotide CpG in critical CTCF binding site 6, of a mutation showing polymorphic frequencies. Although a heterogeneous methylation pattern was observed after DNA sequencing modified by sodium bisulfite, the biallelic methylation pattern was confirmed in 9 out of 10 HNSCCs. These findings are likely to be relevant in the epigenetic regulation of the DMR, especially in pathological conditions in which the imprinting of IGF2 and H19 genes is disrupted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial inner membrane uncoupling proteins (UCP) catalyze a proton conductance that dissipates the proton electrochemical gradient established by the respiratory chain, thus affecting the yield of ATP synthesis. UCPs are involved in mitochondrial energy flow regulation and have been implicated in oxidative stress tolerance. Based on the global gene expression profiling datasets available for Arabidopsis thaliana, in this review we discuss the regulation of UCP gene expression during development and in response to stress, and provide interesting insights on the possible existence of epigenetic regulation of UCP expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Penile carcinoma (PeCa) represents an important public health problem in poor and developing countries. Despite its unpredictable behavior and aggressive treatment, there have only been a few reports regarding its molecular data, especially epigenetic mechanisms. The functional diversity in different cell types is acquired by chromatin modifications, which are established by epigenetic regulatory mechanisms involving DNA methylation, histone acetylation, and miRNAs. Recent evidence indicates that the dysregulation in these processes can result in the development of several diseases, including cancer. Epigenetic alterations, such as the methylation of CpGs islands, may reveal candidates for the development of specific markers for cancer detection, diagnosis and prognosis. There are a few reports on the epigenetic alterations in PeCa, and most of these studies have only focused on alterations in specific genes in a limited number of cases. This review aims to provide an overview of the current knowledge of the epigenetic alterations in PeCa and the promising results in this field. The identification of epigenetically altered genes in PeCa is an important step in understanding the mechanisms involved in this unexplored disease. © 2013 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmissibility of dental and jaw characteristics is strongly influenced by environmental factors during the years of extra uterine life when odontogenesis occurs. Through biochemical factors, such as enzymes, proteins, hormones and other mediators, genes are activated or silenced to suit the cell or organism to its environment. These changes are not transmitted to our descendants, because of that, these factors are called epigenetic. Among the most cited epigenetic factors are food, pollution, drugs and exercise. The objective of this study was to assess the transmissibility of dental characteristics in two pairs of twins. In one case, 13-year-old boys had the same basic dental and jaw characteristics with prolonged retention of the second upper deciduous molars and the presence of permanent successors. In the other case, 14-year-old boys had prolonged retention of lower deciduous second molars and absence of permanent successors, but only one of them had the germs of third lower molars. The phenotypic difference in the dentition of twins from clinical case 2 could be due to epigenetic factors, showing the absence of genetic determinism in the transmissibility of dental characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Embryonic stem cells are cells derived from early-stage embryos that are characterized by pluripotency and self-renewal capacity. The in vitro cultured murine embryonic stem cells can indefinitely propagate in an undifferentiated state in the presence of leukemia inhibitory factor (LIF). However, when stimulated, these cells can differentiate into cell lines derived from all three embryonic germ layers. The trichostatin A (TSA) is an epigenetic modifier agent and several studies have used the TSA to stimulate cellular differentiation. However, most of these studies only assessed one TSA concentration. Therefore, this study aimed to evaluate the effects of different TSA concentrations on histone hyperacetylation during in vitro cell differentiation of murine pluripotent embryonic stem cells, cultured with or without LIF, in the quest of to standardize their application on early cultures of embryonic stem cells.Materials, Methods & Results: Undifferentiated murine embryonic stem cells were plated in the presence of different TSA concentrations (0 nM, 15 nm, 50 nM and 100 nM) in the presence or absence of LIF. Thus, the treatments were evaluated in undifferentiated embryonic stem cells cultured in the presence of LIF (Control group: 0 nM LIF(+); Group 15 nM LIF+; Group 50 nM LIF+ and Group 100 nM LIF+), and in embryonic stem cells cultured in the absence of LIF (Control group: 0 nM LIF; Group 15 nM LIF(-); Group 50 nM LIF(-) and Group 100 nM LIF-). Treatment with TSA was performed for 24 h. After that the medium was replaced with fresh medium without TSA. Samples were collected at 0, 12, 24, 36 and 48 h after the beginning of the experiment. Three replicates were performed in each experimental group. The relative amount of Histone H3 lysine 9 acetylation was analyzed in all groups, as well as the cell proliferation in the embryonic stem cells cultured in the presence of LIF. In the control group (0 nM), the absence of LIF resulted in higher levels (P < 0.05) of H3lys9ac compared to the cultures supplemented with LIF. In the embryonic stem cells cultured in the presence of LIF, the 50 nM and 100 nM treatments resulted in higher levels (P < 0.05) of H3lys9ac when compared with 0 nM and 15 nM treatments. Evaluating the Hoechst area in the 0 nM group, it was observed that the number of cells increased (P < 0.05) according to the time of culture. Treatment with 15 nM also reflected a similar distribution, but the Hoechst area in 15 nM group was lower (P < 0.05) at 24 and 48h when compared to the observed in the control group. In the 100 nM treatment, was observed that the area of Hoechst was lower (P < 0.05) to that obtained in the control group at 12, 24 and 48h. In addition, it was observed that treatment with TSA induces greater cellular differentiation when compared to control groups in stem cells cultured in the presence of LIF as well as in the absence of LIF.Discussion: In the present study it was observed that TSA treatment increased the levels of histone acetylation in murine embryonic stem cells at a 50 nM concentration, making it possible to reduce the concentration recommended in the literature (100 nM). In addtion, it was concluded that the lower TSA concentrations utilized (15 nm and 50 nM) was less harmful to cellular proliferation than the 100 nM TSA concentration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genomic imprinting is defined as a gamete of origin-specific epigenetic modification of DNA leading to differential gene expression in the zygote. Several imprinted genes have been identified and some of them are associated with tumor development. We investigated the expression and the imprinting status of IGF2 and H19 genes in 47 uterine leiomyomas. Using allelic transcription assay, we detected the expression of the IGF2 gene in 10 of a total of 15 informative cases. No loss of imprinting, as determined by the finding of biallelic expression, was detected in any case. The expression of H19 gene was detected in 10 of 20 informative cases and the imprinting pattern was also maintained in all of them. Our data suggest that alterations in IGF2 and H19 genes expression by loss of imprinting do not occur in uterine leiomyomas. (C) 1999 Academic Press.