10 resultados para enzyme functionalized nanoparticles
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper, synthesis of the Fe55Pt45/Fe3O4 core/shell structured nanoparticles using the modified polyol process combined with the seed-mediated growth method is reported. Iron oxide shell thickness was tuned controlling the Fe(acac)(3)/FePt seeds in the reaction medium. Annealing of the core/shell structure leads to iron-rich layer formation around the hard FePt phase in the nanoparticle core. However, the 2 nm Fe3O4 shell thickness seems to be the limit to obtain the enhanced magnetization close to the alpha-Fe and preserving an iron oxide shell after annealing at 500 degrees C for 30 min in a reducing atmosphere. The presence of both the oxide layer on nanoparticle surface and an intermediate iron-rich FePt layer after annealing promote strong decreases in the coercive field of the 2-nm-oxide shell thickness. These annealed nanoparticles were functionalized with dextran, presenting the enhanced characteristics for biomedical applications such as higher magnetization, very low coercivity, and a slightly iron oxide passivated layer, which leads an easy functionalization and decreases the nanoparticle toxicity.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The use of the nasal route for drug delivery has attracted much interest in recent years in the pharmaceutical field. Local and principally systemic drug delivery can be achieved by this route of administration. But the nasal route of delivery is not applicable to all drugs. Polar drugs and some macromolecules are not absorbed in sufficient concentration due to poor membrane permeability, rapid clearance and enzymatic degradation into the nasal cavity. Thus, alternative means that help overcome these nasal barriers are currently in development. Absorption enhancers such as phospholipids and surfactants are constantly used, but care must be taken in relation to their concentration. Drug delivery systems including liposomes, cyclodextrins, micro- and nanoparticles are being investigated to increase the bioavailability of drugs delivered intranasally. This review article discusses recent progress and specific development issues relating to colloidal drug delivery systems in nasal drug delivery. © 2006 Bentham Science Publishers Ltd.
Resumo:
This paper describes the use of Au nanoparticle (NP)-containing hydrogel microstructures in the development of electrochemical enzyme-based biosensors. To fabricate biosensors, AuNPs were conjugated with glucose oxidase (GOX) or horseradish peroxidase (HRP) molecules and were dispersed in the prepolymer solution of poly(ethylene glycol) diacrylate (PEG-DA). Vinylferrocene (VF) was also added into the prepolymer solution in order to lower operating potential of the biosensor and to prevent oxidation of interfering substances. The prepolymer solution was photolithographically patterned in alignment with an array of Au electrodes fabricated on glass. As a result, electrode arrays became functionalized with AuNP/GOX- or AuNP/HRP-carrying hydrogel microstructures. Performance of the biosensors was characterized by impedance spectroscopy, chronoapmerometry and cyclic voltammetry. Impedance measurements revealed that inclusion of Au nanoparticles improved conductivity of PEG hydrogel by a factor of 5. Importantly, biosensors based on AuNP-GOX complex exhibited high sensitivity to glucose (100μAmM -1cm -2) in the linear range from 0.1 to 10mM. The detection limit was estimated to be 3.7×10- 7M at a signal-to-noise ratio of 3. Biosensors with immobilized AuNP/HPR had a linear response from 0.5 to 5.0μM of hydrogen peroxide with sensitivity of 1.4mAmM -1cm -2. The method for fabricating nanoparticle-carrying hydrogel microstructures described in this paper should be widely applicable in the development of robust and sensitive electrochemical biosensors. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
A new highly luminescent europium complex with the formula [Eu(TTA) 3(Bpy-Si)], where TTA stands for the thenoyltrifluoroacetone, (C 4H3S)COCH2COCF3, chelating ligand and Bpy-Si, Bpy-CH2NH(CH2)3Si(OEt)3, is an organosilyldipyridine ligand displaying a triethoxysilyl group as a grafting function has been synthesized and fully characterized. This bifunctional complex has been grafted onto the surface of dense silica nanoparticles (NPs) and on mesoporous silica microparticles as well. The covalent bonding of [Eu(TTA)3(Bpy-Si)] inside uniform Stöber silica nanoparticles was also achieved. The general methodology proposed could be applied to any silica matrix, allowed high grafting ratios that overcome chelate release and the tendency to agglomerate. Luminescent silica-based nanoparticles SiO2-[Eu(TTA)3(Bpy-Si)], with a diameter of 28 ± 2 nm, were successfully tested as a luminescent labels for the imaging of Pseudomonas aeruginosa biofilms. They were also functionalized by a specific monoclonal antibody and subsequently employed for the selective imaging of Escherichia coli bacteria. © 2013 American Chemical Society.
Resumo:
In this work, a sensor was built up with smart material based on polymer brush and gold nanoparticles. The modified electrode functionalized with polyacrylic acid (PAA) tethered to indium tin oxide (ITO) and covered with gold nanoparticle (ITO/PAA/Au) demonstrated switchable interfacial properties discriminating different pHs. The switchable electrochemical and plasmonic process was characterized by cyclic voltammetry (CV), electrochemistry impedance spectroscopy (EIS), and localized surface plasmon resonance (LSPR).
Resumo:
A synergistic electrocatalytic effect was observed in sensors where two electrocatalytic materials (functionalized gold nanoparticles and lutetium bisphthalocyanine) were co-deposited using the Langmuir-Blodgett technique. Films were prepared using a novel method where water soluble functionalised gold nanoparticles [(11-mercaptoundecyl)tetra(ethylene glycol)] (SAuNPs) were inserted in floating films of lutetium bisphthalocyanine (LuPc2) and dimethyldioctadecylammonium bromide (DODAB) as the amphiphilic matrix. The formation of stable and homogeneous mixed films was confirmed by pi-A isotherms, BAM, UV-vis and Raman spectroscopy, as well as by SEM and TEM microscopy. The synergistic effect towards hydroquinone of the electrodes modified with LuPc2:DODAB/SAuNP was characterised by an increase in the intensity of the redox peaks and a reduction of the overpotential. This synergistic electrocatalytic effect arose from the interaction between the SAuNPs and the phthalocyanines that occur in the Langmuir-Blodgett films and from the high surface area provided by the nanostructured films. The sensitivity increased with the amount of LuPc2 and SAuNPs inserted in the films and limits of detection in the range of 10(-7) mol L-1 were attained. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Química - IQ