22 resultados para enhanced green fluorescent protein
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The partitioning of Green Fluorescent Protein (GFP) in poly(ethylene glycol)/Na-poly(acrylate) aqueous two-phase systems (PEG/NaPA-ATPS) has been investigated. The aqueous two-phase systems are formed by mixing the polymers with a salt and a protein solution. The protein partitioning in the two-phase system was investigated at 25 degrees C. The concentration of the GFP was measured by fluorimetry. It was found that the partitioning of GFP depends on the salt type, pH and concentration of PEG. The data indicates that GFP partitions more strongly to the PEG phase in presence of Na2SO4 relative to NaCl. Furthermore, the GFP partitions more to the PEG phase at higher pH. The partition to the PEG phase is strongly favoured in systems with larger tie-line lengths (i.e. systems with higher polymer concentrations). The molecular weight of PEG is important since the partition coefficient (K) of GFP gradually decreases with increasing PEG size, from K ca. 300-400 for PEG 400 to K equal to 1.19 for PEG 8000. A separation process was developed where GFP was separated from a homogenate in two extraction steps: the GFP is first partitioned to the PEG phase in a PEG 3000/NaPA 8000 system containing 3 wt% Na2SO4, where the K value of GFP was 8. The GFP is then re-extracted to a salt phase formed by mixing the previous top-phase with a Na2SO4 solution. The K-value of GFP in this back-extraction was 0.22. The total recovery based on the start material was 74%. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Aims The macrophage migration inhibitory factor (MIF) is an intracellular inhibitor of the central nervous system actions of angiotensin II on blood pressure. Considering that angiotensin II actions at the nucleus of the solitary tract are important for the maintenance of hypertension in spontaneously hypertensive rats (SHRs), we tested if increased MIF expression in the nucleus of the solitary tract of SHR alters the baseline high blood pressure in these rats.Methods and resultsEight-week-old SHRs or normotensive rats were microinjected with the vector AAV2-CBA-MIF into the nucleus of the solitary tract, resulting in MIF expression predominantly in neurons. Rats also underwent recordings of the mean arterial blood pressure (MAP) and heart rate (via telemetry devices implanted in the abdominal aorta), cardiac- and baroreflex function. Injections of AAV2-CBA-MIF into the nucleus of the solitary tract of SHRs produced significant decreases in the MAP, ranging from 10 to 20 mmHg, compared with age-matched SHRs that had received identical microinjections of the control vector AAV2-CBA-eGFP. This lowered MAP in SHRs was maintained through the end of the experiment at 31 days, and was associated with an improvement in baroreflex function to values observed in normotensive rats. In contrast to SHRs, similar increased MIF expression in the nucleus of the solitary tract of normotensive rats produced no changes in baseline MAP and baroreflex function.ConclusionThese results indicate that an increased expression of MIF within the nucleus of the solitary tract neurons of SHRs lowers blood pressure and restores baroreflex function. © 2012 Published on behalf of the European Society of Cardiology. All rights reserved.
Resumo:
Background: To investigate mechanisms of fetal-maternal cell interactions in the bovine placenta, we developed a model of transgenic enhanced Green Fluorescent Protein (t-eGFP) expressing bovine embryos produced by nuclear transfer (NT) to assess the distribution of fetal-derived products in the bovine placenta. In addition, we searched for male specific DNA in the blood of females carrying in vitro produced male embryos. Our hypothesis is that the bovine placenta is more permeable to fetal-derived products than described elsewhere. Methodology/Principal Findings: Samples of placentomes, chorion, endometrium, maternal peripheral blood leukocytes and blood plasma were collected during early gestation and processed for nested-PCR for eGFP and testis-specific Y-encoded protein (TSPY), western blotting and immunohistochemistry for eGFP detection, as well as transmission electron microscopy to verify the level of interaction between maternal and fetal cells. TSPY and eGFP DNA were present in the blood of cows carrying male pregnancies at day 60 of pregnancy. Protein and mRNA of eGFP were observed in the trophoblast and uterine tissues. In the placentomes, the protein expression was weak in the syncytial regions, but intense in neighboring cells on both sides of the fetal-maternal interface. Ultrastructurally, our samples from t-eGFP expressing NT pregnancies showed to be normal, such as the presence of interdigitating structures between fetal and maternal cells. In addition, channels-like structures were present in the trophoblast cells. Conclusions/Significance: Data suggested that there is a delivery of fetal contents to the maternal system on both systemic and local levels that involved nuclear acids and proteins. It not clear the mechanisms involved in the transfer of fetal-derived molecules to the maternal system. This delivery may occur through nonclassical protein secretion; throughout transtrophoblastic-like channels and/or by apoptotic processes previously described. In conclusion, the bovine synepitheliochorial placenta displays an intimate fetal-maternal interaction, similar to other placental types for instance human and mouse. © 2013 Pereira et al.
Resumo:
Several reports have shown that the hippocampus plays an important role in different aspects of the emotional control. There is evidence that lesions in this structure cause behavioral disinhibition, with reduction of reactions expressing fear and anxiety. Thus, to portray the aptitude of cell therapy to abrogate injuries of hippocampal tissue, we examined the behavioral effects of bone marrow mononuclear cells (BMMCs) transplantation on C57BL/6 mice that had the hippocampus damaged by electrolytic lesion. For this purpose, mice received, seven days after bilateral electrolytic lesion in the dorsal hippocampus, culture medium or BMMCs expressing the enhanced green fluorescent protein (EGFP) transgene. One week after transplantation, animals were tested in the elevated plus-maze (EPM). On the whole, three assessment sessions in the EPM were carried out, with seven days separating each trial. Thirty-five days after the induction of injury, mice were sacrificed and their brains removed for immunohistochemistry. The behavioral evaluation showed that the hippocampal lesion caused disinhibition, an effect which was slightly lessened, from the second EPM test, in transplanted subjects. On the other hand, immunohistochemical data revealed an insignificant presence of EGFP+ cells inside the brains of injured mice. In view of such scenario, we hypothesized that the subtle rehabilitation of the altered behavior might be a result from a paracrine effect from the transplanted cells. This might have been caused by the release of bioactive factors capable of boosting endogenous recuperative mechanisms for a partial regaining of the hippocampal functions. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the present work, the antitumor effect of fastuosain, a cysteine proteinase from Bromelia fastuosa, was investigated. In the intravenous model of lung colonization in C57Bl/6 mice, fastuosain and bromelain injected intraperitoneally were protective, and very few nodules of B16F10-Nex2 melanoma cells were detected. Tumor cells treated with fastuosain showed reduced expression of CD44 and decreased invasion through Matrigel, lost their cytoplasmic extensions and substrate adherence, and became round and detached, forming strongly bound cell clusters in suspension. Peritoneal cells recruited and activated by fastuosain treatment ( mainly monocytic cells and lymphocytes) migrated to the lung, where pulmonary melanoma metastases grew. Adoptive transference of peritoneal cells recruited by fastuosain had no protective effect against lung metastases in recipient mice. Treatment of green fluorescent protein - chimeric animals with fastuosain did not change the number of cells that migrated to the lung, compared to PBS-injected control mice, but the number of positive major histocompatibility complex class II cells increased with fastuosain treatment. Murine antibodies against fastuosain, bromelain, and cathepsins B and L cross-reacted in ELISA and recognized surface and cytoplasmic components expressed on B16F10-Nex2 cells. Anti-fastuosain antibodies were cytotoxic/lytic to B16F10-Nex2 cells. Antitumor effects of fastuosain involve mainly the direct effect of the enzyme and elicitation of protective antibodies.
Resumo:
We previously reported that truncation of the N-terminal 79 amino acids of alpha(1D)-adrenoceptors (Delta(1-79)alpha(1D)-ARs) greatly increases binding site density. In this study, we determined whether this effect was associated with changes in alpha(1D)-AR subcellular localization. Confocal imaging of green fluorescent protein (GFP)-tagged receptors and sucrose density gradient fractionation suggested that full-length alpha(1D)-ARs were found primarily in intracellular compartments, whereas Delta(1-79)alpha(1D)-ARs were translocated to the plasma membrane. This resulted in a 3- to 4-fold increase in intrinsic activity for stimulation of inositol phosphate formation by norepinephrine. We determined whether this effect was transplantable by creating N-terminal chimeras of alpha(1)-ARs containing the body of one subtype and the N terminus of another (alpha(1A) NT-D, alpha(1B) NT-D, alpha(1D) NT-A, and alpha(1D)NT-B). When expressed in human embryonic kidney 293 cells, radioligand binding revealed that binding densities of alpha(1A)- or alpha(1B)-ARs containing the alpha(1D)-N terminus decreased by 86 to 93%, whereas substitution of alpha(1A)- or alpha(1B)-N termini increased alpha(1D)-AR binding site density by 2- to 3-fold. Confocal microscopy showed that GFP-tagged alpha(1D)NT-B-ARs were found only on the cell surface, whereas GFP-tagged alpha(1B)NT-D-ARs were completely intracellular. Radioligand binding and confocal imaging of GFP-tagged alpha(1D)- and Delta(1-79)alpha(1D)-ARs expressed in rat aortic smooth muscle cells produced similar results, suggesting these effects are generalizable to cell types that endogenously express alpha(1D)-ARs. These findings demonstrate that the N-terminal region of alpha(1D)-ARs contain a transplantable signal that is critical for regulating formation of functional bindings, through regulating cellular localization.
Resumo:
Osteoblast-derived IL-6 functions in coupled bone turnover by supporting osteoclastogenesis favoring bone resorption instead of bone deposition. Gene regulation of IL-6 is complex occurring both at transcription and post-transcription levels. The focus of this paper is at the level of mRNA stability, which is important in IL-6 gene regulation. Using the MC3T3-E1 as an osteoblastic model, IL-6 secretion was dose dependently decreased by SB203580, a p38 MAPK inhibitor. Steady state IL-6 mRNA was decreased with SB203580 (2 μM) ca. 85% when stimulated by IL-1β (1-5 ng/ ml). These effects require de novo protein synthesis as they were inhibited by cycloheximide. p38 MAPK had minor effects on proximal IL-6 promoter activity in reporter gene assays. A more significant effect on IL-6 mRNA stability was observed in the presence of SB203580. Western blot analysis confirmed that SB203580 inhibited p38 MAP kinase, in response to IL-1β in a dose dependent manner in MC3T3-E1 cells. Stably transfected MC3T3-E1 reporter cell lines (MC6) containing green fluorescent protein (GFP) with the 3′untranslated region of IL-6 were constructed. Results indicated that IL-1β, TNFα, LPS but not parathyroid hormone (PTH) could increase GFP expression of these reporter cell lines. Endogenous IL-6 and reporter gene eGFP-IL-6 3′UTR mRNA was regulated by p38 in MC6 cells. In addition, transient transfection of IL-6 3′UTR reporter cells with immediate upstream MAP kinase kinase-3 and -6 increased GFP expression compared to mock transfected controls. These results indicate that p38 MAPK regulates IL-1β-stimulated IL-6 at a post transcriptional mechanism and one of the primary targets of IL-6 gene regulation is the 3′UTR of IL-6.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)