137 resultados para elliptic functions elliptic integrals weierstrass function hamiltonian
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
By means of an identity that equates the elliptic genus partition function of a supersymmetric sigma model on the N-fold symmetric product (SX)-X-N of X ((SX)-X-N=X-N/S-N, where S-N is the symmetric group of N elements) to the partition function of a second-quantized string theory, we derive the asymptotic expansion of the partition function as well as the asymptotic for the degeneracy of spectrum in string theory. The asymptotic expansion for the state counting reproduces the logarithmic correction to the black hole entropy.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Com o objetivo de estimar parâmetros genéticos para a produção de leite no dia do controle (PLDC), foram usadas as 2.440 primeiras lactações de vacas da raça Gir leiteira, com partos registrados entre 1990 e 2005. As PLDC foram consideradas em dez classes mensais e analisadas por meio de modelo de regressão aleatória (MRA) utilizando-se como efeitos aleatórios o genético-aditivo, o de ambiente permanente e o residual e, como efeitos fixos, o grupo de contemporâneos (GC), a co-variável idade da vaca ao parto (efeito linear e quadrático) e a curva média de lactação da população. Os efeitos genético-aditivos e de ambiente permanente foram modelados utilizando-se as funções de Wilmink (WIL) e Ali e Schaeffer (AS). As variâncias residuais foram modeladas utilizando-se 1, 4, 6 ou 10 classes. Os grupos de contemporâneos foram definidos como rebanho-ano-estação do controle contendo no mínimo três animais. Os testes indicaram que o modelo com quatro classes de variâncias usando a função paramétrica AS foi o que melhor se ajustou aos dados. As estimativas de herdabilidade variaram de 0,21 a 0,33 para a função AS e de 0,17 a 0,30 para WIL e foram maiores na primeira metade da lactação. As correlações genéticas entre as PLDC foram positivas e elevadas entre os controles adjacentes e diminuiram quando a distância entre os controles aumentou. Para o melhor modelo, foram estimados os valores genéticos para a produção de leite acumulada até os 305 dias e, para períodos parciais da lactação, foram obtidas como médias dos valores genéticos preditos naquele período. Os valores genéticos foram comparados, por meio da correlação de posto, ao valor genético predito para a produção acumulada até os 305 dias, pelo método tradicional. As correlações entre os valores genéticos indicaram que podem ocorrer divergências na classificação dos animais pelos critérios estudados.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the present work it is presented a semi-analytical and a numerical study of the perturbation caused in a spacecraft by a third body using a double averaged analytical model with the disturbing function expanded in Legendre polynomials up to the second-order. The important reason for this procedure is to eliminate the terms due to the short time periodic motion of the spacecraft and to show smooth curves for the evolution of the mean orbital elements for a long time period. The aim of this study is to calculate the effect of lunar perturbations on the orbits of spacecrafts that are traveling around the Earth. It is presented an analysis of the stability of a near-circular orbit and a study to know under which conditions this orbit remains near-circular. A study of the equatorial orbits is also performed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work presents a semi-analytical and numerical study of the perturbation caused in a spacecraft by a third-body using a double averaged analytical model with the disturbing function expanded in Legendre polynomials up to the second order. The important reason for this procedure is to eliminate terms due to the short periodic motion of the spacecraft and to show smooth curves for the evolution of the mean orbital elements for a long-time period. The aim of this study is to calculate the effect of lunar perturbations on the orbits of spacecrafts that are traveling around the Earth. An analysis of the stability of near-circular orbits is made, and a study to know under which conditions this orbit remains near circular completes this analysis. A study of the equatorial orbits is also performed. Copyright (C) 2008 R. C. Domingos et al.
Resumo:
We present an analytic study of the finite size effects in sine-Gordon model, based on the semi-classical quantization of an appropriate kink background defined on a cylindrical geometry. The quasi-periodic kink is realized as an elliptic function with its real period related to the size of the system. The stability equation for the small quantum fluctuations around this classical background is of Lame type and the corresponding energy eigenvalues are selected inside the allowed bands by imposing periodic boundary conditions. We derive analytical expressions for the ground state and excited states scaling functions, which provide an explicit description of the flow between the IR and UV regimes of the model. Finally, the semiclassical form factors and two-point functions of the basic field and of the energy operator are obtained, completing the semiclassical quantization of the sine-Gordon model on the cylinder. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In the present work, we expanded the study done by Solorzanol(1) including the eccentricity of the perturbing body. The assumptions used to develop the single-averaged analytical model are the same ones of the restricted elliptic three-body problem. The disturbing function was expanded in Legendre polynomials up to fourth-order. After that, the equations of motion are obtained from the planetary equations and we performed a set of numerical simulations. Different initial eccentricities for the perturbing and perturbed body are considered. The results obtained perform an analysis of the stability of a near-circular orbits and investigate under which conditions this orbit remain near-circular.
Resumo:
The anisotropy of the azimuthal distributions of charged particles produced in √sNN=2.76 TeV PbPb collisions is studied with the CMS experiment at the LHC. The elliptic anisotropy parameter, v2, defined as the second coefficient in a Fourier expansion of the particle invariant yields, is extracted using the event-plane method, two- and four-particle cumulants, and Lee-Yang zeros. The anisotropy is presented as a function of transverse momentum (pT), pseudorapidity (η) over a broad kinematic range, 0.3
Resumo:
We consider a family of two-dimensional nonlinear area-preserving mappings that generalize the Chirikov standard map and model a variety of periodically forced systems. The action variable diffuses in increments whose phase is controlled by a negative power of the action and hence effectively uncorrelated for small actions, leading to a chaotic sea in phase space. For larger values of the action the phase space is mixed and contains a family of elliptic islands centered on periodic orbits and invariant Kolmogorov-Arnold-Moser (KAM) curves. The transport of particles along the phase space is considered by starting an ensemble of particles with a very low action and letting them evolve in the phase until they reach a certain height h. For chaotic orbits below the periodic islands, the survival probability for the particles to reach h is characterized by an exponential function, well modeled by the solution of the diffusion equation. On the other hand, when h reaches the position of periodic islands, the diffusion slows markedly. We show that the diffusion coefficient is scaling invariant with respect to the control parameter of the mapping when h reaches the position of the lowest KAM island. © 2013 American Physical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An analytical approach for the spin stabilized satellite attitude propagation is presented using the non-singular canonical variables to describe the rotational motion. Two sets of variables were introduced for Fukushima in 1994 by a canonical transformation and they are useful when the angle between z-satellite axis of a coordinate system fixed in artificial satellite and the rotational angular momentum vector is zero or when the angle between Z-equatorial axis and rotation angular momentum vector is zero. Analytical solutions for rotational motion equations and torque-free motion are discussed in terms of the elliptic functions and by the application of some simplification to get an approximated solution. These solutions are compared with a numerical solution and the results show a good agreement for many rotation periods. When the mean Hamiltonian associated with the gravity gradient torque is included, an analytical solution is obtained by the application of the successive approximations' method for the satellite in an elliptical orbit. These solutions show that the magnitude of the rotation angular moment is not affected by the gravity gradient torque but this torque causes linear and periodic variations in the angular variables, long and short periodic variations in Z-equatorial component of the rotation angular moment and short periodic variations in x-satellite component of the rotation angular moment. The goal of this analysis is to emphasize the geometrical and physical meaning of the non-singular variables and to validate the approximated analytical solution for the rotational motion without elliptic functions for a non-symmetrical satellite. The analysis can be applied for spin stabilized satellite and in this case the general solution and the approximated solution are coincidence. Then the results can be used in analysis of the space mission of the Brazilian Satellites. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.