28 resultados para electroplating

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromium electrodeposition is a technique for the production of functional coatings on engineering components. These coatings are extensively micro-cracked and present high level of hardness, resistance to corrosion and wear and low coefficient of friction. In this paper the shot peening influence on the fatigue strength of aluminum 7050-T7451 alloy chromium electroplated, was investigated.The shot peening process was carried out to create residual stresses using ceramic and glass shots. A hard chromium electroplated coating of 100 mu m thickness was performed on the base material and the shot peened base material surfaces. S-N curves were obtained in axial and bending fatigue tests and compared with the 7050-T7451 aluminum alloy. In order to study the influence of residual stresses on fatigue life, the behavior of compressive residual stress field was measured by an X-ray tensometry.An increase in the axial fatigue strength of 25% and 50% of ceramic and glass shots, respectively, was observed. The lower performance in fatigue life for ceramic-shot peening may be attributed to higher surface damage, as a consequence of the overpeening intensity performed. However, in bending fatigue the behavior was practically equivalent for both processes. Fracture surface analysis by scanning electron microscopy was used to observe crack origin sites from shot peened and chromium electroplated samples. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most interesting alternatives for replacement of hard chrome plating is tungsten carbide thermal spray coating applied by the high velocity oxy-fuel (HVOF) process which presents a safer, cleaner and less expensive alternative to chromium plating. The objective of this research is to compare the influence of the tungsten carbide-17cobalt (WC- 17Co) coating applied by high velocity oxy fuel (HVOF) process with that of hard-chromium electroplating on the fatigue strength and abrasive wear of AISI 4340 steel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bending fatigue tests were carried out to clarify the effects of heat treatment parameters: temperature and time after cadmium electroplating on a high strength steel, to avoid hydrogen embrittlement. Temperatures heat of 190 degrees C, 230 degrees C, 250 degrees C and 300 degrees C at 3, 8 and 24 hours together with the base material electroplated, with and without heat treatment, resulted in 14 conditions studied with respect to fatigue behaviour. Statistical data analysis was performed to identify the best combination temperature/time regarding fatigue strength of the ABNT 4340 steel and the results obtained revealed that the fatigue strength depend on temperature/time conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cases of decorative and functional applications, chromium results in protection against wear and corrosion combined with chemical resistance and good lubricity. However, pressure to identify alternatives or to improve conventional chromium electroplating mechanical characteristics has increased in recent years, related to the reduction in the fatigue strength of the base material and to environmental requirements. The high efficiency and fluoride-free hard chromium electroplating is an improvement to the conventional process, considering chemical and physical final properties. One of the most interesting, environmentally safer and cleaner alternatives for the replacement of hard chrome plating is tungsten carbide thermal spray coating, applied by the high velocity oxy-fuel (HVOF) process. The aim of this study was to analyse the effects of the tungsten carbide thermal spray coating applied by the HP/HVOF process and of the high efficiency and fluoride-free hard chromium electroplating (in the present paper called 'accelerated'), in comparison to the conventional hard chromium electroplating on the AISI 4340 high strength steel behaviour in fatigue, corrosion, and abrasive wear tests. The results showed that the coatings were damaging to the AISI 4340 steel behaviour when submitted to fatigue testing, with the tungsten carbide thermal spray coatings showing the better performance. Experimental data from abrasive wear tests were conclusive, indicating better results from the WC coating. Regarding corrosion by salt spray test, both coatings were completely corroded after 72 h exposure. Scanning electron microscopy technique (SEM) and optical microscopy were used to observe crack origin sites, thickness and adhesion in all the coatings and microcrack density in hard chromium electroplatings, to aid in the results analysis. © 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deposition of wear-resistant hard chromium plating leads to a decrease in the fatigue strength of the base material. Despite the effective protection against wear and corrosion, fatigue life and environmental requirements result in pressure to identify alternatives or to improve conventional chromium electroplating mechanical characteristics. An interesting, environmentally safer and cleaner alternative for the replacement of hard chronic plating is tungsten carbide thermal spray coating, applied by high velocity oxyfuel (HVOF) process.To improve the fatigue strength of aeronautical steel chromium electroplated, shot peening is a successfully used method. Multiple lacer systems of coatings are considered to have larger resistance to crack propagation in comparison with simple layer.The aim of this study was to analyze the effect of nickel underplate on the fatigue strength of hard chromium plated AISI 4340 steel in two mechanical conditions: HRc 39 and HRc 52.Rotating bending fatigue tests results indicate that the clectroless nickel plating underlayer is responsible for the increase in fatigue strength of AISI 4340 steel chromium electroplated. This behavior may be attributed to the largest toughness/ductility and compressive residual stresses which, probably, arrested or delayed the inicrocrack propagation from the hard chromium external layer. The compressive residual stress field (CRSF) induced by the electroplating process was determined by X-ray diffraction method. The evolution of fatigue strength compressive residual stress field CRSF and crack sources are discussed and analyzed by SEM. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Internal residual stresses significantly influence the fatigue strength of coated materials. It is well known that chromium plating is the most used electrodeposited coating for important industrial applications. However, pressure to identify alternatives or to improve the chromium electroplating process have increased in recent years, related to the reduction in fatigue strength of the base material and to environmental requirements. The high efficiency and fluoride free hard chromium electroplating there called accelerated) is an improvement to the conventional process. One environmentally safer and cleaner alternative to hard chromium plating is tungsten carbide thermal spray coating applied by the High Velocity Oxy-Fuel (HVOF) process. To increase the fatigue strength of chromium plated materials, coating thickness and microcracks density are important parameters to be controlled. Techniques as compressive residual stresses induced by shot peening and multilayers, are also used. The aim of this study was to analyse the effects on AISI 4340 steel, in the rotating bending fatigue behaviour, of the: tungsten carbide thermal spray coating applied by HP/HVOF process; chemical nickel underplate, and shot peening process applied before coating deposition, in comparison to hard chromium electroplatings. Rotating bending fatigue test results indicate better performance for the conventional hard chromium plating in relation to the accelerated hard chromium electroplating. Tungsten carbide thermal spray coating and accelerated hard chromium plate over nickel resulted in higher fatigue strength when compared to samples conventional or accelerated hard chromium plated. Shot peening showed to be an excellent alternative to increase fatigue strength of AISI 4340 steel hard chromium electroplated. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is known that chromium electroplating is related to the reduction in the fatigue strength of base metal. However, chromium results in protection against wear and corrosion combined with chemical resistance and good lubricity. Environmental requirements are an important point to be considered in the search for possible alternatives to hard chrome plating. Aircraft landing gear manufactures are considering WC thermal spray coating applied by the high-velocity oxygen-fuel (HVOF) process an alternative candidate, which shows performance at least comparable to results, obtained for hard chrome plating. The aim of this study is to compare the influence of WC-17Co and WC-10Co-4Cr coatings applied by HVOF process and hard chromium electroplating on the fatigue strength of AISI 4340 steel, with and without shot peening. S-N curves were obtained in axial fatigue test for base material, chromium plated and tungsten carbide coated specimens. Tungsten carbide thermal spray coating results in higher fatigue strength when compared to hard chromium electroplated. Shot peening prior to thermal spraying showed to be an excellent alternative to increase fatigue strength of AISI 4340 steel. Experimental data showed higher axial fatigue and corrosion resistance in salt fog exposure for samples WC-10Co-4Cr HVOF coated when compared with WC-17Co. Fracture surface analysis by scanning electron microscopy (SEM) indicated the existence of a uniform coverage of nearly all substrates. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Residual stresses play an important role in the fatigue lives of structural engineering components. In the case of near surface tensile residual stresses, the initiation and propagation phases of fatigue process are accelerated; on the other hand, compressive residual stresses close to the surface may increase fatigue life. In both decorative and functional applications, chromium electroplating results in excellent wear and corrosion resistance. However, it is well known that it reduces the fatigue strength of a component. This is due to high tensile internal stresses and microcrack density. Efforts to improve hard chromium properties have increased in recent years. In this study, the effect of a nickel layer sulphamate process, as simple layer and interlayer, on fatigue strength of hard chromium electroplated AISI 4340 steel hardness - HRc 53, was analysed. The analysis was performed by rotating bending fatigue tests on AISI 4340 steel specimens with the following experimental groups: base material, hard chromium electroplated, sulphamate nickel electroplated, sulphamate nickel interlayer on hard chromium electroplated and electroless nickel interlayer on hard chromium electroplated. Results showed a decrease in fatigue strength in coated specimens and that both nickel plating interlayers were responsible for the increase in fatigue life of AISI 4340 chromium electroplated steel. The shot peening pre-treatment was efficient in reducing fatigue loss in the alternatives studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recovered substrates have been extensively used in the aerospace field. Cadmium electroplating has been widely applied to promote protective coatings in aeronautical components, resulting in excellent corrosion protection combined with a good performance in cyclic loading. Ecological considerations allied to the increasing demands for corrosion resistance have resulted in the search for possible alternatives. Zinc-nickel (Zn-Ni) alloys have received considerable interest recently, because these coatings show advantages such as a good resistance to white and red rust, high plating rates, and acceptance in the market. In this study, the effect of electroplated Zn-Ni coatings on AISI 4340 high-strength steel was analyzed for rotating bending fatigue strength, corrosion, and adhesion resistance. The compressive residual stress field was measured by x-ray diffraction prior to fatigue tests. Optical microscopy documented coating thickness, adhesion characteristics, and coverage extent for nearly all substrates. Fractured fatigue specimens were investigated using scanning electron microscopy (SEM). Three different Zn-Ni coating thicknesses were tested, and comparisons with the rotating bending fatigue data from electroplated Cd specimens were performed. Experimental results differentiated the effects of the various coatings on the AISI 4340 steel behaviour when submitted to fatigue testing and the influence of coating thickness on the fatigue strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, high-strength materials, particularly AISI 4340 steel, are used in several landing gear components. Due to the high resistance to wear and corrosion required, the components are usually coating by hard chromium. This treatment produces waste, such as Cr+ 6 (hexavalent chromium), generally after applying the coating of hard chromium which is harmful to health and the environment. The process HVOF (High-velocity-oxygen-fuel) is considered a promising technique for deposition of hard chromium alternative coatings, for example, coatings based on tungsten carbide. This technique provides high hardness and good wear strength and more resistance to fatigue when compared to AISI 4340 hard chromium coated. To minimize loss fatigue due to the process of deposition, shot peening is used to obtain a compressive residual stress. The aim of this study was to analyze the effects of the tungsten carbide thermal spray coating applied by the HVOF, in comparison to the conventional hard chromium electroplating on the AISI 4340 high strength steel behavior in fatigue. Optical microscopy and scanning electron microscopy were used to observe crack origin sites, thickness and adhesion of the coating. (C) 2010 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrodeposition of thin copper layer was carried out on titanium wires in acidic sulphate bath. The influence of titanium surface preparation, cathodic current density, copper sulphate and sulphuric acid concentrations, electrical charge density and stirring of the solution on the adhesion of the electrodeposits was studied using the Taguchi statistical method. A L(16) orthogonal array with the six factors of control at two levels each and three interactions was employed. The analysis of variance of the mean adhesion response and signal-to-noise ratio showed the great influence of cathodic current density on adhesion. on the contrary, the other factors as well as the three investigated interactions revealed low or no significant effect. From this study optimized electrolysis conditions were defined. The copper electrocoating improved the electrical conductivity of the titanium wire. This shows that copper electrocoated titanium wires could be employed for both electrical purpose and mechanical reinforcement in superconducting magnets. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of the presence of tartrate additive on the chemical stability of a Cu-Sn acid bath was evaluated. It was observed that this additive hinders decomposition of the Cu/Sn deposition bath with storage time, since the decrease in electrochemical efficiency was attenuated. In addition, it was observed that optimal galvanostatic deposition with or without tartrate occurs at approximately 11 mA cm(-2). However, in the presence of tartrate the deposition charge was lower, leading to lower energy consumption. SEM analysis showed that the tartrate added to the plating bath caused a marked change in the morphology of the Cu/Sn films obtained gal vanostatic ally. (C) 2002 Elsevier B.V. B.V. All rights reserved.