64 resultados para electronic devices

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nowadays, many investments have been made in the area of superconductor materials, with the aim to improve their potential technological applications. Applications on the energy transport using cables, to get high resolution images in the medicine use high magnetic fields, high speed signals use superconductor devices all of them are in crescent evidence and they are showing that the future is coming and next for this new kind of materials. Obviously that everything of this is possible due to the increasing of research with new materials, where the synthesis, characterization and applications are of the mainly objective of these researches. The production of cable for the energy transport has been in advanced stage as the bulks production is too. However, the film production that to aim at the electronic devices area is not as developed or it still need expensive investments. Thinking about that, we are developing a research where we may increase the relation of cost/benefits. Thereby, we are applying the polymeric precursors method to obtain films that will be used in the built of electronic devices. Thin films (mono and multilayers, on crystalline or metallic substrates, controlled thickness) of the BSCCO system have been obtained from dip coating deposition process with excellent results in terms of preferential orientation, controlled thickness, a large area, which may indicate future applications. Based on these results, we present an electrical circuit and their principal characteristics as superconductor transition (85K), transport current density and structure. DC four probes method, scanning electron microscopy, digital optical microscopy and X-ray diffractometry were some techniques used for the characterization of this superconductor electric device. © 2006 Materials Research Society.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work describes the production and characterization of a selective membrane useful for electronic devices. The membrane was a composite made by a thin film of plasma-polymerized HFE (methyl nonafluoro(iso)butyl ether) immersed in plasma-polymerized HMDS (hexamethyldisilazane) film, a third phase being 5 µm starch particles included in this matrix. The film was deposited on silicon substrates and its physical, chemical and adsorption characteristics were determined. Infrared and x-ray photoelectron spectroscopy analyses showed fluorine and carboxyl groups on the bulk and the surface, respectively. SEM results indicate the film is conformal even if starch is present. Optical microscopy analysis showed good resistance toward acid and base solutions. Quartz crystal microbalance indicated adsorption of polar organic compounds on ppm range. This thin film is environment-friendly and can be used as a protective layer or in electronic devices due to adsorption of volatile organic compounds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

FUNDAMENTO: A medida precisa da pressão arterial é fundamental para a investigação científica ou decisão clínica. Nesse sentido, é importante verificar valores fornecidos por equipamentos eletrônicos. OBJETIVO: Validar o monitor Omron HEM 742 de medida de pressão arterial em adolescentes, segundo os critérios sugeridos pela British Hypertension Society. MÉTODOS: Participaram do estudo 150 adolescentes com idades entre 10 e 16 anos. O monitor automático Omron HEM 742 foi conectado em Y com equipamento auscultatório de coluna de mercúrio, e realizaram-se três avaliações simultâneas, calculando-se as diferenças entre os dois equipamentos. Para verificar a relação entre ambos, utilizaram-se o coeficiente de correlação intraclasse e a plotagem de Bland-Altman (concordância). A especificidade e a sensibilidade do aparelho foram determinadas pela curva ROC. RESULTADOS: A comparação entre as medidas acusou uma diferença menor ou igual a 5 mmHg em 67,3% dos valores sistólicos e 69,3% dos valores diastólicos; uma diferença menor ou igual a 10 mmHg ocorreu em 87,3% e 90,6% dos valores sistólicos e diastólicos, respectivamente; e uma diferença menor ou igual a 15 mmHg em 96,6% dos valores sistólicos e 97,3% dos diastólicos. Esses resultados indicam grau A segundo o protocolo da British Hypertension Society. Observou-se ainda elevada concordância nos valores obtidos por meio do monitor automático, e verificou-se que esse equipamento é capaz de identificar a presença ou a ausência da pressão arterial elevada. CONCLUSÃO: O monitor Omron HEM 742 mostrou-se válido para medidas de pressão arterial em adolescentes, conforme os critérios sugeridos pela British Hypertension Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PLZT ceramics belong to one of the very important groups of functional materials that make a basis for the production of a large range of electronic devices. The microstructure and properties of ceramics depend on the powder preparation and thermal processing conditions. Various techniques have been used to obtain chemically homogeneous and fine starting powders. PLZT powders have been prepared by two different production routes: by a modified Pechini method, using a polymeric precursor method (PMM) and by a partial oxalate method. A two-step sintering process, including a hot pressing, was carried out at 1100 and 1200degreesC Distinct phases obtained during the sintering process have been investigated by SEM and EDS techniques and dielectric properties such as permittivity and dielectric loss were measured in a frequency range from 1 to 20 kHz.. A significant difference in microstructure and dielectric properties, depending on powder origin and sintering procedure, has been noticed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we demonstrate that the intrinsic electric field created by a poly(o-methoxyaniline) (POMA) cushion layer hinders the changes in molecular conformation of poly(p-phenylenevinylene) (PPV) in layer-by-layer with dodecylbenzene sulfonic acid (DBS). This was modeled with density functional theory (DFT) calculations where an energy barrier hampered molecular movements of PPV segments when they were subjected to an electric field comparable to that caused by a charged POMA layer. With restricted changes in molecular conformation, the PPV film exhibited Franck-Condon transitions and the photoexcitation spectra resembled the absorption spectra, in contrast to PPV/DBS films deposited directly on glass, with no POMA cushion. Other effects from the POMA cushion were the reduced number of structural defects, confirmed with Raman spectroscopy, and an enhanced PPV emission at high temperatures (300 K) in comparison with the films on bare glass. The positive effects from the POMA cushion may be exploited for enhanced opto-electronic devices, especially as the intrinsic electric field may assist in separating photoexcited electron-hole pairs in photovoltaic devices. © 2013 American Institute of Physics.