11 resultados para elective share
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
ObjectiveTo compare the post-operative analgesic effects of butorphanol or firocoxib in dogs undergoing ovariohysterectomy.Study designProspective, randomized, blinded, clinical trial.AnimalsTwenty-five dogs > 1 year of age.MethodsDogs received acepromazine intramuscularly (IM), 0.05 mg kg-1 and either butorphanol IM, 0.2 mg kg-1 (BG, n = 12) or firocoxib orally (PO), 5 mg kg-1 (FG, n = 13), approximately 30 minutes before induction of anesthesia with propofol. Anesthesia was maintained with isoflurane. Ovariohysterectomy was performed by the same surgeon. Pain scores using the dynamic and interactive visual analog scale (DIVAS) were performed before and at 1, 2, 3, 4, 6, 8 and 20 hours after the end of surgery by one observer, blinded to the treatment. Rescue analgesia was provided with morphine (0.5 mg kg-1) IM and firocoxib, 5 mg kg-1 (BG only) PO if DIVAS > 50. Groups were compared using paired t-tests and Fisher's exact test (p < 0.05). Data are presented as mean +/- SD.ResultsThe BG required significantly less propofol (BG: 2.6 +/- 0.59 mg kg-1; FG: 5.39 +/- 0.7 mg kg-1) (p < 0.05) but the anesthesia time was longer (BG: 14 +/- 6, FG: 10 +/- 4 minutes). There were no differences for body weight (BG: 7.9 +/- 5.0, FG: 11.5 +/- 4.6 kg), sedation scores, and surgery and extubation times (BG: 10 +/- 2, 8 +/- 5 minutes; FG: 9 +/- 3, 8 +/- 4 minutes, respectively) (p > 0.05). The FG had significantly lower pain scores than the BG at 1, 2 and 3 hours following surgery (p < 0.05). Rescue analgesia was administered to 11/12 (92%) and 2/13 (15%) dogs in the BG and FG, respectively (p < 0.05).Conclusion and clinical relevanceFirocoxib produced better post-operative analgesia than butorphanol. Firocoxib may be used as part of a multimodal analgesia protocol but may not be effective as a sole analgesic.
Resumo:
In large distributed systems, where shared resources are owned by distinct entities, there is a need to reflect resource ownership in resource allocation. An appropriate resource management system should guarantee that resource's owners have access to a share of resources proportional to the share they provide. In order to achieve that some policies can be used for revoking access to resources currently used by other users. In this paper, a scheduling policy based in the concept of distributed ownership is introduced called Owner Share Enforcement Policy (OSEP). OSEP goal is to guarantee that owner do not have their jobs postponed for longer periods of time. We evaluate the results achieved with the application of this policy using metrics that describe policy violation, loss of capacity, policy cost and user satisfaction in environments with and without job checkpointing. We also evaluate and compare the OSEP policy with the Fair-Share policy, and from these results it is possible to capture the trade-offs from different ways to achieve fairness based on the user satisfaction. © 2009 IEEE.
Resumo:
Objectives: To evaluate the efficacy and safety of enhanced recovery after surgery (ERAS) programs in elective open surgical repair (OSR) of abdominal aortic aneurysm (AAA).Background: Open surgical repair of AAA is associated with high morbidity and mortality, prolonged hospital stay and high costs. ERAS programs contribute to the optimization of treatment by reducing hospital stay and improving clinical outcomes.Methods: A review of PubMed, EMBASE and LILACS databases was conducted. As only one randomized controlled trial was found, a pooled analysis of proportions from case series was conducted, considering it a complementary overview of the topic. Inclusion criteria were case series with more than five cases reported, adult patients who underwent an elective OSR of AAA and use of an ERAS program. ERAS was compared to conventional perioperative care. The pooled proportion and the confidence interval (CI) are shown for each outcome. The overlap of the CI suggests similar effect of the interventions studied.Results: Thirteen case series studies with ERAS involving 1,250 patients were compared to six case series with conventional care with a total of 1,429 patients. The pooled, respective proportions for ERAS and conventional care were: mortality, 1.51% [95% CI: 0.0091, 0.0226] and 3.0% [95% CI 0.0183, 0.0445]; and incidence of complications, 3.82% [95% CI 0.0259, 0.0528] and 4.0% [95% CI 0.03, 0.05].Conclusion: This review shows that ERAS and conventional care therapies have similar mortality and complication rates in OSR of AAA.
Resumo:
Inhaled anaesthetics have been studied regarding their genotoxic and mutagenic potential in vivo. Propofol differs from volatile anaesthetics because it does not show mutagenic effects and it has been reported to be an antioxidant. However, there are no studies with propofol and genotoxicity in vivo. The study aimed to evaluate the hypothesis that propofol is not genotoxic and it inhibits lipid peroxidation [malondialdehyde (MDA)] in patients undergoing propofol anaesthesia. ASA physical status I patients scheduled for elective surgery, lasting at least 90 min, were enrolled in this study. Initially, the estimated plasma concentration of propofol was targeted at 4 microg ml(-1) and then maintained at 2-4 microg ml(-1) until the end of surgery. Haemodynamic data were determined at baseline (before premedication) and in conjunction with target-controlled infusion of propofol: after tracheal intubation, 30, 60 and 90 min after anaesthesia induction and at the end of the surgery. Venous blood samples were collected at baseline, after tracheal intubation, at the end of the surgery and on the postoperative first day for evaluating DNA damage in white blood cells (WBCs), by comet assay, and MDA levels. Haemodynamic data did not differ among times. No statistically significant differences were observed for the levels of DNA damage in WBCs, nor in plasma MDA, among the four times. Propofol does not induce DNA damage in WBCs and does not alter MDA in plasma of patients.
Resumo:
Isoflurane is a volatile halogenated anesthetic used especially for anesthesia maintenance whereas propofol is a venous anesthetic utilized for anesthesia induction and maintenance, and reportedly an antioxidant. However, there are still controversies related to isoflurane-induced oxidative stress and it remains unanswered whether the antioxidant effects occur in patients under propofol anesthesia.Taking into account the importance of better understanding the role of anesthetics on oxidative stress in anesthetized patients, the present study was designed to evaluate general anesthesia maintained with isoflurane or propofol on antioxidant status in patients who underwent minimally invasive surgeries.We conducted a prospective randomized trial in 30 adult patients without comorbidities who underwent elective minor surgery (septoplasty) lasting at least 2 h admitted to a Brazilian tertiary hospital.The patients were randomly allocated into 2 groups, according to anesthesia maintenance (isoflurane, n = 15 or propofol, n = 15). Peripheral blood samples were drawn before anesthesia (baseline) and 2-h after anesthesia induction.The primary outcomes were to investigate the effect of either isoflurane or propofol anesthesia on aqueous plasma oxidizability and total antioxidant performance (TAP) by fluorometry as well as several individual antioxidants by high-performance liquid chromatography. As secondary outcome, oxidized genetic damage (7,8-dihydro-8-oxoguanine, known as 8-oxo-Gua) was investigated by the comet assay.Both anesthesia techniques (isoflurane or propofol) for a 2-h period resulted in a significant decrease of plasma α-tocopherol, but not other antioxidants including uric acid, carotenoids, and retinol (P > 0.05). Propofol, in contrast to isoflurane anesthesia, significantly increased (P < 0.001) anti-inflammatory/antioxidant plasma γ-tocopherol concentration in patients. Both anesthesia types significantly enhanced hydrophilic antioxidant capacity and TAP, with no significant difference between them, and 8-oxo-Gua remained unchanged during anesthesia in both groups. In addition, both anesthetics showed antioxidant capacity in vitro.This study shows that anesthesia maintained with either propofol or isoflurane increase both hydrophilic and total antioxidant capacity in plasma, but only propofol anesthesia increases plasma γ-tocopherol concentration. Additionally, both types of anesthetics do not lead to oxidative DNA damage in patients without comorbidities undergoing minimally invasive surgery.