21 resultados para ecological impact

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Defaunation, the loss or population decline of medium and large native vertebrates represents a significant threat to the biodiversity of tropical ecosystems. Here we review the anthropogenic drivers of defaunation, provide a brief historical account of the development of this field, and analyze the types of biological consequences of this impact on the structure and functioning of tropical ecosystems. We identify how defaunation, operating at a variety of scales, from the plot to the global level, affects biological systems along a gradient of processes ranging from plant physiology (vegetative and reproductive performance) and animal behavior (movement, foraging and dietary patterns) in the immediate term; to plant population and community dynamics and structure leading to disruptions of ecosystem functioning (and thus degrading environmental services) in the short to medium term; to evolutionary changes (phenotypic changes and population genetic structure) in the long-term. We present such a synthesis as a preamble to a series of papers that provide a compilation of our current understanding of the impact and consequences of tropical defaunation. We close by identifying some of the most urgent needs and perspectives that warrant further study to improve our understanding of this field, as we confront the challenges of living in a defaunated world. © 2013 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Environmental factors strongly affect mangrove crabs, and some factors modulate population structure and habitat partitioning during the crabs' life cycle. However, the effect of these environmental factors on habitat selection by mangrove crabs is still unknown. We evaluated habitat selection by the mangrove crab Ucides cordatus in mangrove forests with different degrees of predominance of Rhizophora mangle, Laguncularia racemosa or Avicennia schaueriana, two tidal flooding levels (less- and more-flooded), and two biological periods (breeding and non-breeding seasons). Sampling was conducted in four mangrove forests with different influences of these biotic and abiotic parameters. We used the data for sex ratio to explain environmental partitioning by this species. Females predominated in R. mangle mangroves, independently of the biological period (breeding or non-breeding seasons), and males predominated only in the less-flooded L. racemosa mangroves. The flooding level affected the sex ratio of U. cordatus, with a predominance of males in less-flooded mangroves, independently of the biological period; and a gender balance in the more-flooded mangroves only during the breeding season. Outside the breeding season, the largest specimens were recorded in the R. mangle mangroves, but in the breeding season, the largest crabs were recorded in the L. racemosa mangroves with a higher level of flooding. These results suggest that tree-species composition and tidal flooding level can have a significant effect on the habitat partitioning of sexes and sizes of the mangrove crab U. cordatus both during and outside the breeding season. © 2012 Springer-Verlag and AWI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work approaches the main eco-efficient techniques and materials that can be used to ensure the proper functioning of the habitat with the main objective of preserving energy and reducing the ecological impact. The harnessing of energy to run a house using materials in a correct way makes it possible to achieve the goals related to its rational use. So, the more consolidated techniques need to be studied separately to determine the global effect on housing. The results obtained, with the aid of standard NBR15220 ABNT, were a series of ecotécnicas that can be used in 8 relatively homogeneous zones. This study was made to create a public awareness of the current environmental problems that society is facing nowadays and the urgent need to practice responsible use of energy

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Documenting the presence and abundance of the neotropical mammals is the first step for understanding their population ecology, behavior and genetic dynamics in designing conservation plans. The combination of field research with molecular genetics techniques are new tools that provide valuable biological information avoiding the disturbance in the ecosystems, trying to minimize the human impact in the process to gather biological information. The objective of this paper is to review the available non invasive sampling techniques that have been used in Neotropical mammal studies to apply to determine the presence and abundance, population structure, sex ratio, taxonomic diagnostic using mitochondrial markers, and assessing genetic variability using nuclear markers. There are a wide range of non invasive sampling techniques used to determine the species identification that inhabit an area such as searching for tracks, feces, and carcasses. Other useful equipment is the camera traps that can generate an image bank that can be valuable to assess species presence and abundance by morphology. With recent advances in molecular biology, it is now possible to use the trace amounts of DNA in feces and amplify it to analyze the species diversity in an area, and the genetic variability at intraspecific level. This is particularly helpful in cases of sympatric and cryptic species in which morphology failed to diagnose the taxonomic status of several species of brocket deer of the genus Mazama.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work evaluates the environmental impact resulting from the natural gas and diesel combustion in thermoelectric power plants that utilize the combined cycle technology (CC), as regarding to Brazilian conditions according to Thermopower Priority Plan JPP). In the regions where there are not natural gas the option has been the utilization of diesel and consequentily there are more emission of pollutants. The ecological efficiency concept, which evaluates by and large the environmental impact, caused by CO2, SO2, NOx and particulate matter (PM) emissions. The combustion gases of the thermoelectric power plants working with natural gas (less pollutant) and diesel (more pollutant) cause problems to the environment, for their components harm the human being life, animals and directly the plants. The resulting pollution from natural gas and diesel combustion is analyzed, considering separately the CO2, SO2, NO2 and particulate matter gas emission and comparing them with the in use international standards regarding the air quality. It can be concluded that it is possible to calculate thermoelectric power plant quantitative and qualitative environment factor, and on the ecological standpoint, for plant with total power of 41441 kW, being 27 170 kW for the gas turbine and 14271 kW for the steam turbine. The natural gas used as fuel is better than the diesel, presenting ecological efficiency of 0.944 versus 0.914 for the latter, considering a thermal efficiency of 54% for the combined cycle. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper evaluates and quantifies the environmental impact resulting from the combination of biodiesel fuel (pure or blended with diesel), and diesel combustion in thermoelectric power plants that utilize combined cycle technology (CC). In regions without natural gas, the option was to utilize diesel fuel; the consequence would be a greater emission of pollutants. Biodiesel is a renewable fuel which has been considerably interesting in Brazil power matrix in recent years. The concept of ecological efficiency, largely evaluates the environmental impact caused by CO(2), SO(2), NO(x) and particle matter (PM) emissions. The pollution resulting from biodiesel and diesel combustion is analyzed, separately considering CO(2), SO(2), NO(x) and particulate matter gas emissions, and comparing them international standards currently used regarding air quality. It can be concluded that it is possible to calculate the qualitative environmental factor, and the ecological effect, from a thermoelectric power plant utilizing central heat power (CHP) of combined cycle. The ecological efficiency for pure biodiesel fuel (B100) is 98.16%; for biodiesel blended with conventional diesel fuel, B20 (20% biodiesel and 80% diesel) is 93.19%. Finally, ecological efficiency for conventional diesel is 92.18%, as long as a thermal efficiency of 55% for thermoelectric power plants occurs. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper evaluates and quantifies the environmental impact from the use of some renewable fuels and fossils fuels in internal combustion engines. The following fuels are evaluated: gasoline blended with anhydrous ethyl alcohol (anhydrous ethanol), conventional diesel fuel, biodiesel in pure form and blended with diesel fuel, and natural gas. For the case of biodiesel, its complete life cycle and the closed carbon cycle (photosynthesis) were considered. The ecological efficiency concept depends on the environmental impact caused by CO(2), SO(2), NO(x) and particulate material (PM) emissions. The exhaust gases from internal combustion engines, in the case of the gasoline (blended with alcohol), biodiesel and biodiesel blended with conventional diesel, are the less polluting; on the other hand, the most polluting are those related to conventional diesel. They can cause serious problems to the environment because of their dangerous components for the human, animal and vegetable life. The resultant pollution of each one of the mentioned fuels are analyzed, considering separately CO(2), SO(2), NO(x) and particulate material (PM) emissions. As conclusion, it is possible to calculate an environmental factor that represents, qualitatively and quantitative, the emissions in internal combustion engines that are mostly used in urban transport. Biodiesel in pure form (B100) and blended with conventional diesel as fuel for engines pollute less than conventional diesel fuel. The ecological efficiency for pure biodiesel (B100) is 86.75%: for biodiesel blended with conventional diesel fuel (B20, 20% biodiesel and 80% diesel), it is 78.79%. Finally, the ecological efficiency for conventional diesel, when used in engines, is 77.34%; for gasoline, it is 82.52%, and for natural gas, it is 91.95%. All these figures considered a thermal efficiency of 30% for the internal combustion engine. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emergence of soft-bodied metazoans and the radiation of the earliest skeletal organisms substantially changed the ecological dynamics of Ediacaran environments, leading to the genesis of biogenic hard-part deposits for the fi rst time in Earth's history. The impact of bioclast origin on sedimentary processes is analyzed herein, focusing on the sedimentology and taphonomy of shell concentrations dominated by the Ediacaran index fossil Cloudina from the Itapucumí Group, Paraguay. Skeletal concentrations include both dense accumulations of parautochthonous, disarticulated specimens (Type 1 deposits) and in situ specimens preserved as loosely packed assemblages (Type 2 deposits). At that time, Cloudina was the critical source of durable biomineralized hard parts in an environment nearly free of other bioclasts. The simple fabric and geometry of these accumulations are typical of Cambrian-style shell beds. Despite their Precambrian age, these deposits indicate that the establishment of the Phanerozoic style of marine substrates and preservation in early shell beds was determined more by the acquisition of hard parts than by environmental changes. © 2013 Geological Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial patterns in assemblage structures are generated by ecological processes that occur on multiple scales. Identifying these processes is important for the prediction of impact, for restoration and for conservation of biodiversity. This study used a hierarchical sampling design to quantify variations in assemblage structures of Brazilian estuarine fish across 2 spatial scales and to reveal the ecological processes underlying the patterns observed. Eight areas separated by 0.7 to 25 km (local scale) were sampled in 5 estuaries separated by 970 to 6000 km (regional scale) along the coast, encompassing both tropical and subtropical regions. The assemblage structure varied significantly in terms of relative biomass and presence/absence of species on both scales, but the regional variation was greater than the local variation for either dataset. However, the 5 estuaries sampled segregated into 2 major groups largely congruent with the Brazilian and Argentinian biogeographic provinces. Three environmental variables (mean temperature of the coldest month, mangrove area and mean annual precipitation) and distance between estuaries explained 44.8 and 16.3%, respectively, of the regional-scale variability in the species relative biomass. At the local scale, the importance of environmental predictors for the spatial structure of the assemblages differed between estuarine systems. Overall, these results support the idea that on a regional scale, the composition of fish assemblages is simultaneously determined by environmental filters and species dispersal capacity, while on a local scale, the effect of environmental factors should vary depending on estuary-specific physical and hydrological characteristics © 2013 Inter-Research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper discusses the application of High Strength Concrete (HSC) technology for concrete production with the incorporation of Rice Husk Ash (RHA) residues by replacing a bulk of the material caking and rubber tires with partial aggregate volume, assessing their influence on the mechanical properties and durability. For concrete with RHA and rubber, it was possible to reduce the brittleness by increasing the energy absorbing capacity. With respect to abrasion, the RHA and rubber concretes showed lower mass loss than the concrete without residues, indicating that this material is attractive to be used in paving. It is thus hoped that these residues may represent a technological and ecological alternative for the production of concrete in construction works.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)