8 resultados para early fertilization
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A aplicação antecipada de fertilizante potássico no cultivo de espécies de cobertura no sistema plantio direto (SPD) pode ser vantajosa para a lavoura comercial. O objetivo deste trabalho foi avaliar a produtividade de grãos e a acumulação de K na soja em função da aplicação antecipada de fertilizante potássico na instalação do milheto em relação com o K aplicado na semeadura da soja subseqüente no SPD. O experimento foi realizado na FCA-Unesp em Botucatu-SP, nas safras 2000/2001, 2001/2002 e 2002/2003. Utilizou-se um Latossolo Vermelho distroférrico de textura média, que estava sendo cultivado com soja e aveia-preta no SPD, por dois anos antes da instalação do experimento. O milheto (Pennisetum glaucum) foi semeado em setembro sobre a palhada de aveia-preta (Avena strigosa), e a soja (Glycine max) na primeira quinzena de dezembro, nos três anos agrícolas. Utilizou-se o delineamento experimental em blocos ao acaso no esquema fatorial 4 x 4, com quatro repetições, com 0, 30, 60 e 90 kg ha-1 de K2O no milheto, combinados com 0, 30, 60 e 90 kg ha-1 de K2O na soja. Coletaram-se plantas de soja aos 25, 50, 75 e 100 dias após a emergência, e os grãos no final do ciclo, para a determinação do acúmulo de K e da produtividade. A antecipação de 60 a 90 kg ha-1 de K2O na semeadura do milheto não comprometeu o acúmulo de K na lavoura de soja. As máximas produtividades de soja foram alcançadas no primeiro e segundo ano com doses de 85 a 90 kg ha-1 de K2O, que poderiam ser antecipadas totalmente na semeadura da gramínea de cobertura. A aplicação antecipada de KCl na semeadura do milheto minimizou a exportação de K pela colheita de grãos de soja.
Resumo:
The presence of heparin and a mixture of penicillamine, hypotaurine, and epinephrine (PHE) solution in the in vitro fertilization (IVF) media seem to be a prerequisite when bovine spermatozoa are capacitated in vitro, in order to stimulate sperm motility and acrosome reaction. The present study was designed to determine the effect of the addition of heparin and PHE during IVF on the quality and penetrability of spermatozoa into bovine oocytes and on subsequent embryo development. Sperm quality, evaluated by the integrity of plasma and acrosomal membranes and mitochondrial function, was diminished (P < 0.05) in the presence of heparin and PHE. Oocyte penetration and normal pronuclear formation rates, as well as the percentage of zygotes presenting more than two pronuclei, was higher (P < 0.05) in the presence of heparin and PHE. No differences were observed in cleavage rates between treatment and control (P > 0.05). However, the developmental rate to the blastocyst stage was increased in the presence of heparin and PHE (P > 0.05). The quality of embryos that reached the blastocyst stage was evaluated by counting the inner cell mass (ICM) and trophectoderm (TE) cell numbers and total number of cells; the percentage of ICM and TE cells was unaffected (P > 0.05) in the presence of heparin and PHE (P < 0.05). In conclusion, this study demonstrated that while the supplementation of IVF media with heparin and PHE solution impairs spermatozoa quality, it plays an important role in sperm capacitation, improving pronuclear formation, and early embryonic development. © 2013 The Society for In Vitro Biology.
Resumo:
The initial growth and mineral nutrition of the physic nut (Jatropha curcas L.) as a function of nitrogen (N) fertilization was investigated. The transplanting of seedlings was carried out in plastic pots filled with 50 dm3 of a Rhodic Hapludox, under a plastic greenhouse. In addition to a control treatment, the dosages of 0, 40, 80, 120, and 160 mg dm−3 N were tested. The results demonstrated that N fertilization for the cultivation of physic nut could be added as top dressing from 60 days after planting with a dosage of 65 mg dm−3. A SPAD index of 46 can be used as a nutritional reference to its initial development. Furthermore, the results suggested that the order of nutrient accumulation by the physic nut plants is as follows: potassium (K) > N > magnesium (Mg) > calcium (Ca) > phosphorus (P) > sulfur (S) > iron (Fe) > manganese (Mn) > boron (B) > zinc (Zn) > copper (Cu).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
There is species divergence in control of DNA methylation during preimplantation development. The exact pattern of methylation in the bovine embryo has not been established nor has its regulation by gender or maternal signals that regulate development such as colony stimulating factor 2 (CSF2). Using immunofluorescent labeling with anti-5-methylcytosine and embryos produced with X-chromosome sorted sperm, it was demonstrated that methylation decreased from the 2-cell stage to the 6-8 cell stage and then increased thereafter up to the blastocyst stage. In a second experiment, embryos of specific genders were produced by fertilization with X- or Y-sorted sperm. The developmental pattern was similar to the first experiment, but there was stage × gender interaction. Methylation was greater for females at the 8-cell stage but greater for males at the blastocyst stage. Treatment with CSF2 had no effect on labeling for DNA methylation in blastocysts. Methylation was lower for inner cell mass cells (i.e., cells that did not label with anti-CDX2) than for trophectoderm (CDX2-positive). The possible role for DNMT3B in developmental changes in methylation was evaluated by determining gene expression and degree of methylation. Steady-state mRNA for DNMT3B decreased from the 2-cell stage to a nadir for D 5 embryos >16 cells and then increased at the blastocyst stage. High resolution melting analysis was used to assess methylation of a CpG rich region in an intronic region of DNMT3B. Methylation percent decreased between the 6-8 cell and the blastocyst stage but there was no difference in methylation between ICM and TE. Results indicate that DNA methylation undergoes dynamic changes during the preimplantation period in a manner that is dependent upon gender and cell lineage. Developmental changes in expression of DNMT3B are indicative of a possible role in changes in methylation. Moreover, DNMT3B itself appears to be under epigenetic control by methylation. © 2013 Dobbs et al.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)