3 resultados para eCognition

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growth of large cities is usually accelerated and disorganized, which causes social, economical and infrastructural conflicts and frequently, occupation in illegal areas. For a better administration of these areas, the public manager needs information about their location. This information can be obtained through land utilization and land cover maps, where orbital images of remote sensing are used as one of the most traditional sources of data. In this context, the present work tested the applicability of the object-based classification to categorize two slum areas, taking into account the structure of the streets, size of the huts, distance between the houses, among other parameters. These area combinations of physical aspects were analyzed using the image IKONOS II and the software eCognition. Slum areas tend to be, to the contrary of the planned areas, disarranged, with narrow streets, small houses built with a variety of materials and without definition of blocks. The results of land cover classification for slum areas are encouraging because they are accurate and little ambiguous in the classification process. Thus, it would allow its utilization by urban managers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metropolitan region of São Paulo is the most populous of the country, this happens because of its great importance in the national economy and the job opportunities that are offered to the population. These factors result in intense population growth and urban expansion, reaching some non-habitable places of the metropolis, as areas of pipelines, which are very important for the transportation of natural gas, oil and its derivatives. Before the population growth of the region, these sites were unoccupied, do not presenting problems for the population. However, with the disorderly occupation is generated great anthropogenic pressure on the pipeline stitches, causing risks to people who are around them. Therefore it is extremely important to monitor the strip of pipelines through products and techniques of remote sensing and geoprocessing, enabling, through high spatial resolution images, identification of objects or phenomena that occur on Earth's surface that can alter the functioning and safety of pipelines. Therefore, this study aims to monitor a stretch of the area of the pipeline mesh GASPAL/OSVAT and Capuava Refinery (RECAP), located on the outskirts of the metropolitan area of São Paulo in the city of Mauá, who suffer great human pressure, proving thus the techniques of remote sensing and geographic information system (GIS) as effective tools for monitoring phenomena occurred in urban areas of great complexity. The monitoring was done by object-based classification applied in orbital images Ikonos II and RapidEye, of high spatial resolution and, image processing, detection of objects, segmentation, classification and editing were developed through the eCognition and ArcGis softwares. To determine the statistical accuracy of the mapping of the land cover of the stretch of pipeline in Maua, the results were analyzed by error matrix... (Complete abstract click electronic access below)