180 resultados para dynamical scaling

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coarsening of the nanoporous structure developed in undoped and 3% Sb-doped SnO2 sol-gel dip-coated films deposited on a mica substrate was studied by time-resolved small-angle x-ray scattering (SAXS) during in situ isothermal treatments at 450 and 650 degrees C. The time dependence of the structure function derived from the experimental SAXS data is in reasonable agreement with the predictions of the statistical theory of dynamical scaling, thus suggesting that the coarsening process in the studied nanoporous structures exhibits dynamical self-similar properties. The kinetic exponents of the power time dependence of the characteristic scaling length of undoped SnO2 and 3% Sb-doped SnO2 films are similar (alpha approximate to 0.09), this value being invariant with respect to the firing temperature. In the case of undoped SnO2 films, another kinetic exponent, alpha('), corresponding to the maximum of the structure function was determined to be approximately equal to three times the value of the exponent alpha, as expected for the random tridimensional coarsening process in the dynamical scaling regime. Instead, for 3% Sb-doped SnO2 films fired at 650 degrees C, we have determined that alpha(')approximate to 2 alpha, thus suggesting a bidimensional coarsening of the porous structure. The analyses of the dynamical scaling functions and their asymptotic behavior at high q (q being the modulus of the scattering vector) provided additional evidence for the two-dimensional features of the pore structure of 3% Sb-doped SnO2 films. The presented experimental results support the hypotheses of the validity of the dynamic scaling concept to describe the coarsening process in anisotropic nanoporous systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of a fragmentation model is examined from the point of view of numerical simulation and rate equations. The model includes effects of temperature. The number n (s,t) of fragments of size s at time t is obtained and is found to obey the scaling form n(s,t) approximately s(-tau)t(omegasgamma e(-rhot) f(s/t(z)) where f(x) is a crossover function satisfying f(x) congruent-to 1 for x much less than and f(x) much less than 1 for x much greater than 1. The dependence of the critical exponents tau, omega, gamma and z on space dimensionality d is studied from d = 1 to 5. The result of the dynamics on fractal and nonfractal objects as well as on square and triangular lattices is also examined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Some dynamical properties present in a problem concerning the acceleration of particles in a wave packet are studied. The dynamics of the model is described in terms of a two-dimensional area preserving map. We show that the phase space is mixed in the sense that there are regular and chaotic regions coexisting. We use a connection with the standard map in order to find the position of the first invariant spanning curve which borders the chaotic sea. We find that the position of the first invariant spanning curve increases as a power of the control parameter with the exponent 2/3. The standard deviation of the kinetic energy of an ensemble of initial conditions obeys a power law as a function of time, and saturates after some crossover. Scaling formalism is used in order to characterise the chaotic region close to the transition from integrability to nonintegrability and a relationship between the power law exponents is derived. The formalism can be applied in many different systems with mixed phase space. Then, dissipation is introduced into the model and therefore the property of area preservation is broken, and consequently attractors are observed. We show that after a small change of the dissipation, the chaotic attractor as well as its basin of attraction are destroyed, thus leading the system to experience a boundary crisis. The transient after the crisis follows a power law with exponent -2. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the pure gauge Schwinger-Dyson equation for the gluon propagator in the Landau gauge within an approximation proposed by Mandelstam many years ago. We show that a dynamical gluon mass arises as a solution. This solution is obtained numerically in the full range of momenta that we have considered without the introduction of any ansatz or asymptotic expression in the infrared region. The vertex function that we use follows a prescription formulated by Cornwall to determine the existence of a dynamical gluon mass in the light cone gauge. The renormalization procedure differs from the one proposed by Mandelstam and allows for the possibility of a dynamical gluon mass. Some of the properties of this solution, such as its dependence on A(QCD) and its perturbative scaling behavior are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some dynamical properties for a classical particle confined in an infinitely deep box of potential containing a periodically oscillating square well are studied. The dynamics of the system is described by using a two-dimensional non-linear area-preserving map for the variables energy and time. The phase space is mixed and the chaotic sea is described using scaling arguments. Scaling exponents are obtained as a function of all the control parameters, extending the previous results obtained in the literature. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some dynamical properties of an ensemble of trajectories of individual (non-interacting) classical particles of mass m and charge q interacting with a time-dependent electric field and suffering the action of a constant magnetic field are studied. Depending on both the amplitude of oscillation of the electric field and the intensity of the magnetic field, the phase space of the model can either exhibit: (i) regular behavior or (ii) a mixed structure, with periodic islands of regular motion, chaotic seas characterized by positive Lyapunov exponents, and invariant Kolmogorov-Arnold-Moser curves preventing the particle to reach unbounded energy. We define an escape window in the chaotic sea and study the transport properties for chaotic orbits along the phase space by the use of scaling formalism. Our results show that the escape distribution and the survival probability obey homogeneous functions characterized by critical exponents and present universal behavior under appropriate scaling transformations. We show the survival probability decays exponentially for small iterations changing to a slower power law decay for large time, therefore, characterizing clearly the effects of stickiness of the islands and invariant tori. For the range of parameters used, our results show that the crossover from fast to slow decay obeys a power law and the behavior of survival orbits is scaling invariant. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772997]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study numerically the Schwinger-Dyson equations for the coupled system of gluon and ghost propagators in the Landau gauge and in the case of pure gauge QCD. We show that a dynamical mass for the gluon propagator arises as a solution while the ghost propagator develops an enhanced behavior in the infrared regime of QCD. Simple analytical expressions are proposed for the propagators, and the mass dependency on the ΛQCD scale and its perturbative scaling are studied. We discuss the implications of our results for the infrared behavior of the coupling constant, which, according to fits for the propagators infrared behavior, seems to indicate that α s(q2) → 0 as q2 → 0. © SISSA/ISAS 2004.