35 resultados para dynamic impulse response

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A direct version of the boundary element method (BEM) is developed to model the stationary dynamic response of reinforced plate structures, such as reinforced panels in buildings, automobiles, and airplanes. The dynamic stationary fundamental solutions of thin plates and plane stress state are used to transform the governing partial differential equations into boundary integral equations (BIEs). Two sets of uncoupled BIEs are formulated, respectively, for the in-plane state ( membrane) and for the out-of-plane state ( bending). These uncoupled systems are joined to formamacro-element, in which membrane and bending effects are present. The association of these macro-elements is able to simulate thin-walled structures, including reinforced plate structures. In the present formulation, the BIE is discretized by continuous and/or discontinuous linear elements. Four displacement integral equations are written for every boundary node. Modal data, that is, natural frequencies and the corresponding mode shapes of reinforced plates, are obtained from information contained in the frequency response functions (FRFs). A specific example is presented to illustrate the versatility of the proposed methodology. Different configurations of the reinforcements are used to simulate simply supported and clamped boundary conditions for the plate structures. The procedure is validated by comparison with results determined by the finite element method (FEM).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamics of the AFM-atomic force microscope follows a model based in a Timoshenko cantilever beam with a tip attached at the free end and acting with the surface of a sample. General boundary conditions arise when the tip is either in contact or non-contact with the surface. The governing equations are given in matrix conservative form subject to localized loads. The eigenanalysis is done with a fundamental matrix response of a damped second-order matrix differential equation. Forced responses are found by using a Galerkin approximation of the matrix impulse response. Simulations results with harmonic and pulse forcing show the filtering character and the effects of the tip-sample interaction at the end of the beam. © 2012 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A correction procedure based on digital signal processing theory is proposed to smooth the numeric oscillations in electromagnetic transient simulation results from transmission line modeling based on an equivalent representation by lumped parameters. The proposed improvement to this well-known line representation is carried out with an Finite Impulse Response (FIR) digital filter used to exclude the high-frequency components associated with the spurious numeric oscillations. To prove the efficacy of this correction method, a well-established frequency-dependent line representation using state equations is modeled with an FIR filter included in the model. The results obtained from the state-space model with and without the FIR filtering are compared with the results simulated by a line model based on distributed parameters and inverse transforms. Finally, the line model integrated with the FIR filtering is also tested and validated based on simulations that include nonlinear and time-variable elements. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, the use of differential evolution ( DE), a global search technique inspired by evolutionary theory, to find the parameters that are required to achieve optimum dynamic response of parallel operation of inverters with no interconnection among the controllers is proposed. Basically, in order to reach such a goal, the system is modeled in a certain way that the slopes of P-omega and Q-V curves are the parameters to be tuned. Such parameters, when properly tuned, result in system's eigenvalues located in positions that assure the system's stability and oscillation-free dynamic response with minimum settling time. This paper describes the modeling approach and provides an overview of the motivation for the optimization and a description of the DE technique. Simulation and experimental results are also presented, and they show the viability of the proposed method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work it is proposed an optimized dynamic response of parallel operation of two single-phase inverters with no control communication. The optimization aims the tuning of the slopes of P-ω and Q-V curves so that the system is stable, damped and minimum settling time. The slopes are tuned using an algorithm based on evolutionary theory. Simulation and experimental results are presented to prove the feasibility of the proposed approach. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a consistent and concise analysis of the free and forced vibration of a mass supported by a parallel combination of a spring and an elastically supported damper (a Zener model). The results are presented in a compact form and the physical behaviour of the system is emphasised. This system is very similar to the conventional single-degree-of freedom system (sdof)-(Voigt model), but the dynamics can be quite different depending on the system parameters. The usefulness of the additional spring in series with the damper is investigated, and optimum damping values for the system subject to different types of excitation are determined and compared.There are three roots to the characteristic equation for the Zener model; two are complex conjugates and the third is purely real. It is shown that it is not possible to achieve critical damping of the complex roots unless the additional stiffness is at least eight times that of the main spring. For a harmonically excited system, there are some possible advantages in using the additional spring when the transmitted force to the base is of interest, but when the displacement response of the system is of interest then the benefits are marginal. It is shown that the additional spring affords no advantages when the system is excited by white noise. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with feedback vibration control of a lightly damped flexible structure that has a large number of well-separated modes. A single active electrical dynamic absorber is used to reduce a particular single vibration mode selectively or multiple modes simultaneously. The absorber is realized electrically by feeding back the structural acceleration at one position to a collocated piezoceramic patch actuator via a controller consisting of one or several second order lowpass filters. A simple analytical method is presented to design a modal control filter that is optimal in that it maximally flattens the mobility frequency response of the target mode, as well as robust in that it works within a prescribed maximum control spillover of 2 dB at all frequencies. Experiments are conducted with a free-free beam to demonstrate its ability to control any single mode optimally and robustly. It is also shown that an active absorber with multiple such filters can effectively control multiple modes simultaneously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Engineers often face the challenge of reducing the level of vibrations experienced by a given payload or those transmitted to the support structure to which a vibrating source is attached. In order to increase the range over which vibrations are isolated, soft mounts are often used in practice. The drawback of this approach is the static displacement may be too large for reasons of available space for example. Ideally, a vibration isolator should have a high-static stiffness, to withstand static loads without too large a displacement, and at the same time, a low dynamic stiffness so that the natural frequency of the system is as low as possible which will result in an increased isolation region. These two effects are mutually exclusive in linear isolators but can be overcome if properly configured nonlinear isolators are used. This paper is concerned with the characterisation of such a nonlinear isolator comprising three springs, two of which are configured to reduce the dynamic stiffness of the isolator. The dynamic behaviour of the isolator supporting a lumped mass is investigated using force and displacement transmissibility, which are derived by modelling the dynamic system as a single-degree-of-freedom system. This results in the system dynamics being approximately described by the Duffing equation. For a linear isolator, the dynamics of the system are the same regardless if the source of the excitation is a harmonic force acting on the payload (force transmissibility) or a harmonic motion of the base (displacement transmissibility) on which the payload is mounted. In this paper these two expressions are compared for the nonlinear isolator and it is shown that they differ. A particular feature of the displacement transmissibility is that the response is unbounded at the nonlinear resonance frequency unless the damping in the isolator is greater than some threshold value, which is not the case for force transmissibility. An explanation for this is offered in the paper. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the potency and maximal responses (E-max) to the adenosine receptor agonists N-6-cyclopentyladenosine (CPA), N-ethylcarboxamidoadenosine (NECA) and N-6-(3-iodobenzyl)-5'-N-methylcarbaxamidoadenosine (IB-MECA) in right atria from trained rats. We also investigated the interaction between the training bradycardia and the sensitivity of the chronotropic response mediated by adenosine receptor stimulation.2. Animals were submitted to run training for 60 min, 5 days a week, over a period of 8 weeks. Mean blood pressure and heart rate were measured in conscious animals. Right atria were isolated and concentration-response curves to CPA, NECA and IB-MECA were obtained.3. A reduction in heart rate was found in trained rats, indicating that the training programme was successful in inducing physical conditioning. The three adenosine receptor agonists induced a concentration-dependent negative chronotropic response. The rank order of potency and E-max for the three adenosine receptor agonists was CPA>NECA>IB-MECA.4. Dynamic exercise for 8 weeks did not alter the E a, for CPA, NECA and IB-MECA. Similarly, the potencies of CPA and NECA were not affected by run training, whereas the potency of IB-MECA was reduced (6.10+/-0.09 vs 5.66+/-0.10 for sedentary and trained groups, respectively).5. In conclusion, run training for 8 weeks induced a desensitization of the chronotropic response to IB-MECA without changing the potency of CPA and NECA. These findings exclude the participation of adenosine receptors in the training bradycardia.