30 resultados para drug targets

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glycosomes are peroxisome-related organelles found in all kinetoplastid protists, including the human pathogenic species of the family Trypanosomatidae: Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. Glycosomes are unique in containing the majority of the glycolytic/gluconeogenic enzymes, but they also possess enzymes of several other important catabolic and anabolic pathways. The different metabolic processes are connected by shared co-factors and some metabolic intermediates, and their relative importance differs between the parasites or their distinct life-cycle stages, dependent on the environmental conditions encountered. By genetic or chemical means, a variety of glycosomal enzymes participating in different processes have been validated as drug targets. For several of these enzymes, as well as others that are likely crucial for proliferation, viability or virulence of the parasites, inhibitors have been obtained by different approaches such as compound libraries screening or design and synthesis. The efficacy and selectivity of some initially obtained inhibitors of parasite enzymes were further optimized by structure-activity relationship analysis, using available protein crystal structures. Several of the inhibitors cause growth inhibition of the clinically relevant stages of one or more parasitic trypanosomatid species and in some cases exert therapeutic effects in infected animals. The integrity of glycosomes and proper compartmentalization of at least several matrix enzymes is also crucial for the viability of the parasites. Therefore, proteins involved in the assembly of the organelles and transmembrane passage of substrates and products of glycosomal metabolism offer also promise as drug targets. Natural products with trypanocidal activity by affecting glycosomal integrity have been reported.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Drug delivery systems are essential components of drugs controlled release. In the last decades, several drug delivery technologies have emerged including capsules, liposomes. microparticles, nanoparticles, and polymers. These components must be biocompatible, biodegradable, and display a desired biodistribution providing a long-term availability of the therapeutic at specific target over time.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To achieve effective drug concentration at the intended site for a sufficient period of time is a requisite desired for many drug formulations. For drugs intended to ocular delivery, its poor bioavailability is due to pre-corneal factors. Most ocular diseases are treated by topical drug application in the form of solution, suspension and ointment. However, such dosage forms are no longer sufficient to combat some ocular diseases. Intravitreal drug injection is the current therapy for disorders in posterior segment. The procedure is associated with a high risk of complications, particularly when frequent, repeated injections are required. Thus, sustained-release technologies are being proposed, and the benefits of using colloidal carriers in intravitreal injections are currently under investigation for posterior drug delivery. This review will discuss recent progress and specific development issues relating to colloidal drug delivery systems, such as liposomes, niosomes, nanoparticles, and microemulsions in ocular drug delivery.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The increase in incidence of infectious diseases worldwide, particularly in developing countries, is worrying. Each year, 14 million people are killed by infectious diseases, mainly HIV/AIDS, respiratory infections, malaria and tuberculosis. Despite the great burden in the poor countries, drug discovery to treat tropical diseases has come to a standstill. There is no interest by the pharmaceutical industry in drug development against the major diseases of the poor countries, since the financial return cannot be guaranteed. This has created an urgent need for new therapeutics to neglected diseases. A possible approach has been the exploitation of the inhibition of unique targets, vital to the pathogen such as the shikimate pathway enzymes, which are present in bacteria, fungi and apicomplexan parasites but are absent in mammals. The chorismate synthase (CS) catalyses the seventh step in this pathway, the conversion of 5-enolpyruvylshikimate-3-phosphate to chorismate. The strict requirement for a reduced flavin mononucleotide and the anti 1,4 elimination are both unusual aspects which make CS reaction unique among flavin-dependent enzymes, representing an important target for the chemotherapeutic agents development. In this review we present the main biochemical features of CS from bacterial and fungal sources and their difference from the apicomplexan CS. The CS mechanisms proposed are discussed and compared with structural data. The CS structures of some organisms are compared and their distinct features analyzed. Some known CS inhibitors are presented and the main characteristics are discussed. The structural and kinetics data reviewed here can be useful for the design of inhibitors. © 2007 Bentham Science Publishers Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We review evidence that Stem Cell Factor (SCF) plays an important role in the pathophysiology of asthma. SCF is produced by a wide variety of cells present in asthmatic lung, including mast cells and eosinophils. Its receptor, c-kit, is broadly expressed on mature mast cells and eosinophils. SCF promotes recruitment of mast cell progenitors into tissues, as well as their local maturation and activation. It also promotes eosinophil survival, maturation and functional activation. SCF enhances IgE-dependent release of mediators from mast cells, including histamine, leukotrienes, cytokines (TNF-alpha, IL-5, GM-CSF) and chemokines (RANTES/CCL5, MCP-1/CCL2, TARC/CCL17 e MDC/CCL22); it is required for IL-4 production in mast cells. SCF, acting in concert with IgE, also upregulates the expression and function of CC chemokine receptors in mast cells. Structural and resident airway cells express increased levels of SCF in the bronchus of asthmatic patients. In a murine model of asthma, allergen exposure increased production of SCF by epithelial cells and alveolar macrophages, which was transient and paralleled by histamine release. SCF induced long-lived airway hyperreactivity, which was prevented by local neutralization of SCF, as well as by inhibitors of the production or activity of cysteinyl-leukotrienes. Together, these observations suggest that SCF has an important role in asthma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The recent recrudescence of Mycobacterium tuberculosis infection and the emergence of multidrug-resistant strains have created an urgent need for new therapeutics against tuberculosis. The enzymes of the shikimate pathway are attractive drug targets because this route is absent in mammals and, in M. tuberculosis, it is essential for pathogen viability. This pathway leads to the biosynthesis of aromatic compounds, including aromatic amino acids, and it is found in plants, fungi, bacteria, and apicomplexan parasites. The aroB-encoded enzyme dehydroquinate synthase is the second enzyme of this pathway, and it catalyzes the cyclization of 3-deoxy-D-arabino-heptulosonate-7-phosphate in 3-dehydroquinate. Here we describe the PCR amplification and cloning of the aroB gene and the overexpression and purification of its product, dehydroquinate synthase, to homogeneity. In order to probe where the recombinant dehydroquinate synthase was active, genetic complementation studies were performed. The Escherichia coli AB2847 mutant was used to demonstrate that the plasmid construction was able to repair the mutants, allowing them to grow in minimal medium devoid of aromatic compound supplementation. In addition, homogeneous recombinant M. tuberculosis dehydroquinate synthase was active in the absence of other enzymes, showing that it is homomeric. These results will support the structural studies with M. tuberculosis dehydroquinate synthase that are essential for the rational design of antimycobacterial agents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tuberculosis (TB) poses a major worldwide public health problem. The increasing prevalence of TB, the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis, the causative agent of TB, and the devastating effect of co-infection with HIV have highlighted the urgent need for the development of new antimycobacterial agents. Analysis of the complete genome sequence of M. tuberculosis shows the presence of genes involved in the aromatic amino acid biosynthetic pathway. Experimental evidence that this pathway is essential for M. tuberculosis has been reported. The genes and pathways that are essential for the growth of the microorganisms make them attractive drug targets since inhibiting their function may kill the bacilli. We have previously cloned and expressed in the soluble form the fourth shikimate pathway enzyme of the M. tuberculosis, the aroE-encoded shikimate dehydrogenase (mtSD). Here, we present the purification of active recombinant aroE-encoded M. tuberculosis shikimate dehydrogenase (mtSD) to homogeneity, N-terminal sequencing, mass spectrometry, assessment of the oligomeric state by gel filtration chromatography, determination of apparent steady-state kinetic parameters for both the forward and reverse directions, apparent equilibrium constant, thermal stability, and energy of activation for the enzyme-catalyzed chemical reaction. These results pave the way for structural and kinetic studies, which should aid in the rational design of mtSD inhibitors to be tested as antimycobacterial agents. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tuberculosis (TB) remains the leading cause of mortality due to a bacterial pathogen, Mycobacterium tuberculosis. However, no new classes of drugs for TB have been developed in the past 30 years. Therefore there is an urgent need to develop faster acting and effective new antitubercular agents, preferably belonging to new structural classes, to better combat TB, including MDR-TB, to shorten the duration of current treatment to improve patient compliance, and to provide effective treatment of latent tuberculosis infection. The enzymes in the shikimate pathway are potential targets for development of a new generation of antitubercular drugs. The shikimate pathway has been shown by disruption of aroK gene to be essential for the Mycobacterium tuberculosis. The shikimate kinase (SK) catalyses the phosphorylation of the 3-hydroxyl group of shikimic acid (shikimate) using ATP as a co-substrate. SK belongs to family of nucleoside monophosphate (NMP) kinases. The enzyme is an alpha/beta protein consisting of a central sheet of five parallel beta-strands flanked by alpha-helices. The shikimate kinases are composed of three domains: Core domain, Lid domain and Shikimate-binding domain. The Lid and Shikimate-binding domains are responsible for large conformational changes during catalysis. More recently, the precise interactions between SK and substrate have been elucidated, showing the binding of shikimate with three charged residues conserved among the SK sequences. The elucidation of interactions between MtSK and their substrates is crucial for the development of a new generation of drugs against tuberculosis through rational drug design.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of nucleosides and deoxynucleosides, generating ribose 1-phosphate and the purine base, which is an important step of purine catabolism pathway. The lack of such an activity in humans, owing to a genetic disorder, causes T-cell impairment, and thus drugs that inhibit human PNP activity have the potential of being utilized as modulators of the immunological system to treat leukemia, autoimmune diseases, and rejection in organ transplantation. Besides, the purine salvage pathway is the only possible way for apicomplexan parasites to obtain the building blocks for RNA and DNA synthesis, which makes PNP from these parasites an attractive target for drug development against diseases such as malaria. Hence, a number of research groups have made efforts to elucidate the mechanism of action of PNP based on structural and kinetic studies. It is conceivable that the mechanism may be different for PNPs from diverse sources, and influenced by the oligomeric state of the enzyme in solution. Furthermore, distinct transition state structures can make possible the rational design of specific inhibitors for human and apicomplexan enzymes. Here, we review the current status of these research efforts to elucidate the mechanism of PNP-catalyzed chemical reaction, focusing on the mammalian and Plamodium falciparum enzymes, targets for drug development against, respectively, T-Cell and Apicomplexan parasites-mediated diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

EPSP synthase (EPSPS) is an essential enzyme in the shikimate pathway, transferring the enolpyruvyl group of phosphoenolpyruvate to shikimate-3-phosphate to form 5-enolpyruvyl-3-shikimate phosphate and inorganic phosphate. This enzyme is composed of two domains, which are formed by three copies of βαβαββ-folding units; in between there are two crossover chain segments hinging the nearly topologically symmetrical domains together and allowing conformational changes necessary for substrate conversion. The reaction is ordered with shikimate-3-phosphate binding first, followed by phosphoenolpyruvate, and then by the subsequent release of phosphate and EPSP. N-[phosphomethyl]glycine (glyphosate) is the commercial inhibitor of this enzyme. Apparently, the binding of shikimate-3-phosphate is necessary for glyphosate binding, since it induces the closure of the two domains to form the active site in the interdomain cleft. However, it is somehow controversial whether binding of shikimate-3-phosphate alone is enough to induce the complete conversion to the closed state. The phosphoenolpyruvate binding site seems to be located mainly on the C-terminal domain, while the binding site of shikimate-3-phosphate is located primarily in the N-terminal domain residues. However, recent results demonstrate that the active site of the enzyme undergoes structural changes upon inhibitor binding on a scale that cannot be predicted by conventional computational methods. Studies of molecular docking based on the interaction of known EPSPS structures with (R)- phosphonate TI analogue reveal that more experimental data on the structure and dynamics of various EPSPS-ligand complexes are needed to more effectively apply structure-based drug design of this enzyme in the future. © 2007 Bentham Science Publishers Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Paracoccidioides brasiliensis is a dimorphic fungus that causes paracoccidioidomycosis, the most prevalent human deep mycosis in Latin America. The dimorphic transition from mycelium to yeast (M-Y) is triggered by a temperature shift from 25°C to 37°C and is critical for pathogenicity. Intracellular Ca 2+ levels increased in hyphae immediately after temperature-induced dimorphism. The chelation of Ca 2+ with extracellular (EGTA) or intracellular (BAPTA) calcium chelators inhibited temperature-induced dimorphism, whereas the addition of extracellular Ca 2+ accelerated dimorphism. The calcineurin inhibitor cyclosporine A (CsA), but not tacrolimus (FK506), effectively decreased cell growth, halted the M-Y transition that is associated with virulence, and caused aberrant growth morphologies for all forms of P. brasiliensis. The difference between CsA and FK506 was ascribed by the higher levels of cyclophilins contrasted to FKBPs, the intracellular drug targets required for calcineurin suppression. Chronic exposure to CsA abolished intracellular Ca 2+ homeostasis and decreased mRNA transcription of the CCH1 gene for the plasma membrane Ca 2+ channel in yeast-form cells. CsA had no detectable effect on multidrug resistance efflux pumps, while the effect of FK506 on rhodamine excretion was not correlated with the transition to yeast form. In this study, we present evidence that Ca 2+/calmodulin-dependent phosphatase calcineurin controls hyphal and yeast morphology, M-Y dimorphism, growth, and Ca 2+ homeostasis in P. brasiliensis and that CsA is an effective chemical block for thermodimorphism in this organism. The effects of calcineurin inhibitors on P. brasiliensis reinforce the therapeutic potential of these drugs in a combinatory approach with antifungal drugs to treat endemic paracoccidioidomycosis. Copyright © 2008, American Society for Microbiology. All Rights Reserved.