78 resultados para drug binding site
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Aberrant methylation of seven potential binding sites of the CTCF factor in the differentially methylated region upstream of the H19 gene (H19-DMR) has been suggested as critical for the regulation of IGF2 and H19 imprinted genes. In this study, we analyzed the allele-specific methylation pattern of CTCF binding sites 5 and 6 using methylationsensitive restriction enzyme PCR followed by RFLP analysis in matched tumoral and lymphocyte DNA from head-and-neck squamous cell carcinoma (HNSCC) patients, as well as in lymphocyte DNA from control individuals who were cancer-free. The monoallelic methylation pattern was maintained in CTCF binding site 5 in 22 heterozygous out of 91 samples analyzed. Nevertheless, a biallelic methylation pattern was detected in CTCF binding site 6 in a subgroup of HNSCC patients as a somatic acquired feature of tumor cells. An atypical biallelic methylation was also observed in both tumor and lymphocyte DNA from two patients, and at a high frequency in the control group (29 out of 64 informative controls). Additionally, we found that the C/T transition detected by HhaI RFLP suppressed one dinucleotide CpG in critical CTCF binding site 6, of a mutation showing polymorphic frequencies. Although a heterogeneous methylation pattern was observed after DNA sequencing modified by sodium bisulfite, the biallelic methylation pattern was confirmed in 9 out of 10 HNSCCs. These findings are likely to be relevant in the epigenetic regulation of the DMR, especially in pathological conditions in which the imprinting of IGF2 and H19 genes is disrupted.
Resumo:
Loss of allele-specific expression by the imprinted genes IGF2 and H19 has been correlated with a differentially methylated region (DMR) upstream to the H19 gene. The H19-DMR contains seven potential CCCTC-binding factor (CTCF) binding sites. CTCF is a chromatin insulator and a multifunctional transcription factor whose binding to the H19-DMR is suppressed by DNA methylation. Our study included a group of 41 head and neck squamous cell carcinoma (HNSCC) samples. The imprinting status of the H19 gene was analyzed in 11 out of 35 positive cases for H19 gene expression, and only 1 of them showed loss of imprinting. We detected a significant correlation (P=0.041, Fisher's exact test) between H19 expression and tumor recurrence. Among H19 positive cases, six were T2, in which five developed recurrence and/or metastasis. Inversely, in the group of tumors that showed no H19 gene expression, 5 out of 24 were T2 and only I presented regional recurrence. These data support the hypothesis that H19 expression could be used as a prognostic marker to indicate recurrence in early stage tumors. We also examined the methylation of the CTCF binding site 1 in a subgroup of these samples. The H19 gene silencing and loss of imprinting were not correlated with the methylation pattern of the CTCF binding site 1. However, the significant correlation between H19 expression and tumor recurrence suggest that this transcript could be a marker for the progression of HNSCC. (c) 2005 Wiley-Liss, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Hrp1p is a heterogeneous ribonucleoprotein (hnRNP) from the yeast Saccharomyces cerevisiae that is involved in the cleavage and polyadenylation of the 3'-end of mRNAs and mRNA export. In addition, Hrp1p is one of several RNA-binding proteins that are posttranslationally modified by methylation at arginine residues. By using-functional recombinant Hrp1p, we have identified RNA sequences with specific high affinity binding sites. These sites correspond to the efficiency element for mRNA 3'-end formation, UAUAUA. To examine the effect of methylation on specific RNA binding, purified recombinant arginine methyltransferase (Hmt1p) was used to methylate Hrp1p. Methylated Hrp1p binds with the same affinity to UAUAUA-containing RNAs as unmethylated Hrp1p indicating that methylation does not affect specific RNA binding. However, RNA itself inhibits the methylation of Hrp1p and this inhibition is enhanced by RNAs that specifically bind Hrp1p. Taken together, these data support a model in which protein methylation occurs prior to protein-RNA binding in the nucleus.
Resumo:
Problems related to the systemic administration of drugs, such as biodistribution, difficulty of targeting, necessity of high doses to achieve adequate levels of the drug in specific sites, toxicity, and undesirable side effects have lead to the development of systems able to direct the drug to specific sites in the body. Among the possible organs to the targeting of drugs, the colon can be used for local and systemic therapies. By developing such systems some models have been tested, using pH dependent release, release controlled by enzymatic degradation, time controlled release systems and pressure controlled release systems. This review presents an overview of the colonic release of drugs and the strategies used to achieve such targeting.
Resumo:
Actiaomycin-D (actD) binds to natural DNA at two different classes of binding sites, weak and strong. The affinity for these sites is highly dependent on DNA se(sequence and solution conditions, and the interaction appears to be purely entropic driven Although the entropic character of this reaction has been attributed to the release of water molecules upon drug to DNA complex formation, the mechanism by which hydration regulates actD binding and discrimination between different classes of binding sites on natural DNA is still unknown. In this work, we investigate the role of hydration on this reaction using the osmotic stress method. We skew that the decrease of solution water activity, due to the addition of sucrose, glycerol ethylene glycol, and betaine, favors drug binding to the strong binding sites on DNA by increasing both the apparent binding affinity Delta G, and the number of DNA base pairs apparently occupied by the bound drug n(bp/actD). These binding parameters vary linearly with the logarithm of the molar fraction of water in solution log(X-w), which indicates the contribution of water binding to the energetic of the reaction. It is demonstrated that the hydration change measured upon binding increases proportionally to the apparent size of the binding site n(bp/uctD). This indicates that n(bp/actD) measured from the Scatchard plod is a measure of the size of the DNA molecule changing conformation due to ligand binding. We also find that the contribution of DNA deformation, gauged by n(bp/act) to the total free energy of binding Delta G, is given by Delta G = Delta G(local) + n(bp/actD) x delta G(DNA), where Delta G(local), = -8020 +/- 51 cal/mol of actD bound and delta G(DNa) = -24.1 +/- 1.7cal/mol of base pair at 25 degrees C. We interpret Delta G(local), as the energetic contribution due to the direct interactions of actD with the actual tetranucleotide binding site, and it n(bp/actB) X delta G(DNA) as that due to change inconformation, induced by binding, of it n(bp/actD) DNA base pairs flanking the local site. This interpretation is supported by the agreement found between the value of delta G(DNA) and the torsional free energy change measured independently. We conclude suggesting an allosteric model for ligand binding to DNA, such that the increase in binding affinity is achieved by increasing the relaxation of the unfavorable free energy of binding storage at the local site through a larger number of DNA base pairs. The new aspect on this model is that the size of the complex is not fixed but determined by solutions conditions, such as water activity, which modulate the energetic barrier to change helix conformation. These results may suggest that long-range allosteric transitions of duplex DNA are involved in the inhibition of RNA synthesis by actD, and more generally, in the regulation of transcription. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work we present evidence that water molecules are actively involved on the control of binding affinity and binding site discrimination of a drug to natural DNA. In a previous study, the effect of water activity (a(w)) on the energetic parameters of actinomycin-D intercalation to natural DNA was determined using the osmotic stress method (39). This earlier study has shown evidence that water molecules act as an allosteric regulator of ligand binding to DNA via the effect of water activity on the long-range stability of the DNA secondary structure. In this work we have carried out DNA circularization experiments using the plasmid pUC18 in the absence of drugs and in the presence of different neutral solutes to evaluate the contribution of water activity to the energetics of DNA helix unwinding. The contribution of water to these independent reactions were made explicit by the description of how the changes in the free energy of ligand binding to DNA and in the free energy associated with DNA helix torsional deformation are linked to a(w) via changes in structural hydration. Taken together, the results of these studies reveal an extensive linkage between ligand binding affinity and site binding discrimination, and long range helix conformational changes and DNA hydration, This is strong evidence that water molecules work as a classical allosteric regulator of ligand binding to the DNA via its contribution to the stability of the double helix secondary structure, suggesting a possible mechanism by which the biochemical machinery of DNA processing takes advantage of the low activity of water into the cellular milieu.
Mapping eIF5A binding sites for Dys1 and Lia1: In vivo evidence for regulation of eIF5A hypusination
Resumo:
The evolutionarily conserved factor eIF5A is the only protein known to undergo hypusination, a unique posttranslational modification triggered by deoxyhypusine synthase (Dys1). Although eIF5A is essential for cell viability, the function of this putative translation initiation factor is still obscure. To identify eIF5A-binding proteins that could clarify its function, we screened a two-hybrid library and identified two eIF-5A partners in S. cerevisiae: Dys1 and the protein encoded by the gene YJR070C, named Lia1 (Ligand of eIF5A). The interactions were confirmed by GST pulldown. Mapping binding sites for these proteins revealed that both eIF5A domains can bind to Dys1, whereas the C-terminal domain is sufficient to bind Lia1. We demonstrate for the first time in vivo that the N-terminal α-helix of Dys1 can modulate enzyme activity by inhibiting eIF5A interaction. We suggest that this inhibition be abrogated in the cell when hypusinated and functional eIF5A is required. © 2003 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
Bacterial DNA gyrase, has been identified as the target of several antibacterial agents, including the coumarin drugs. The coumarins inhibit the gyrase action by competitive binding to the ATP-binding site of DNA gyrase B (GyrB) protein. The high in vitro inhibitory potency of coumarins against DNA gyrase reactions has raised interest in studies on coumarin-gyrase interactions. In this context, a series of low-molecular weight peptides, including the coumarin resistance-determining region of subunit B of Escherichia coli gyrase, has been designed and synthesized. The first peptide model was built using the natural fragment 131-146 of GyrB and was able to bind to novobiocin (K a = 1.8 ± 0.2 × 105/M) and ATP (Ka = 1.9 ± 0.4 × 103/M). To build the other sequences, changes in the Arg136 residue were introduced so that the binding to the drug was progressively reduced with the hydrophobicity of this residue (Ka = 1.3 ± 0.1 × 105/M and 1.0 ± 0.2 × 105/M for Ser and His, respectively). No binding was observed for the change Arg136 to Leu. In contrast, the binding to ATP was not altered, independently of the changes promoted. On the contrary, for peptide-coumarin and peptide-ATP complexes, Mg2+ appears to modulate the binding process. Our results demonstrate the crucial role of Arg 136 residue for the stability of coumarin-gyrase complex as well as suggest a different binding site for ATP and in both cases the interactions are mediated by magnesium ions. Copyright Blackwell Munksgaard, 2005.
Resumo:
Phrixotrix (railroad worm) luciferases produce bioluminescence in the green and red regions of the spectrum, depending on the location of the lanterns, and are the only luciferases naturally producing red bioluminescence. Comparison of the luciferase sequences showed a set of substitutions that could be involved in bioluminescence colour determination: (a) unique substitutions in the red luciferase replacing otherwise invariant residues; (b) conserved basic residues in the green-yellow emitting luciferases; and (c) an additional R353 residue in red-emitting luciferase (Viviani et al., 1999). To investigate whether these sites have a functional role in bioluminescence colour determination, we performed a site-directed mutagenesis. Natural substitutions in the region 220-344 and residues in the putative luciferin-binding site were also investigated. With the exception of the previously identified substitution of R215 and T226 (Viviani et al., 2002), which display dramatic red-shift effects on the spectrum of green-yellow-emitting luciferases, only a few substitutions had a moderate effect on the spectrum of the green-emitting luciferase. In contrast, no single substitution affected the spectrum of the red-emitting luciferase. The results suggest that the identity of the active site residues is not so critical for determining red bioluminescence in PxRE luciferase. Rather, the conformation assumed during the emitting step could be critical to set up proper interactions with excited oxyluciferin. Copyright ©2007 John Wiley & Sons, Ltd.
Resumo:
Vip3Aa, Vip3Af, Cry1Ab, and Cry1Fa were tested for their toxicities and binding interactions. Vip3A proteins were more toxic than Cry1 proteins. Binding assays showed independent specific binding sites for Cry1 and Vip3A proteins. Cry1Ab and Cry1Fa competed for the same binding sites, whereas Vip3Aa competed for those of Vip3Af. Copyright © 2009, American Society for Microbiology. All Rights Reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)