162 resultados para drop sensor

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fluorometric technique based on a liquid drop excited from its interior by an optical fiber is described for the measurement of low concentrations of atmospheric hydrogen sulfide (H2S). A drop of alkaline fluorescein mercuric acetate (FMA) solution is suspended in a flowing air sample stream and serves as a renewable sensor. An optical fiber contained within the conduit that forms the drop, brings in the excitation beam; the fluorescence emission is measured by an inexpensive photodiode positioned close to the drop. As H2S in the sample is collected by the alkaline drop, it reacts rapidly with FMA resulting in a significant decrease in fluorescence intensity, proportional to the concentration of H2S sampled. The chemistry of this uniquely selective reaction has been well established for many years, the present technique permits a simple fast inexpensive near real-time measurement with very little reagent consumption. Even without prolonged sampling/preconcentration steps, limits of detection (LODs) in the double digit ppbv range is readily attainable. (C) 1997 Elsevier B.V. B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A sensitive and affordable approach is described for the in-situ measurement of ambient formaldehyde. Air is sampled around a 100 microliter aqueous drop containing 3-methyl-2-benzothiazoline hydrazone. After a desired period of sampling (typ. 5 min) and a waiting period of 10 min for the reaction to be completed, a second reagent (FeCl3) is added to the drop by means of a conjoined conduit. A blue product is formed and is read after an additional 10 min of reaction by a fiber-optic/light emitting diode based photodetector. A fresh drop is then formed and the process begins anew. As demonstrated here, the limit of detection is similar to 6.25 mu g m(-3) HCHO but can be significantly improved by using longer sampling times and a sampling rate higher than 100 mi min(-1) used in most of this work. This is the first example of a chromogenic drop sensor that utilizes sequential reagent addition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and sensitive method to determine parts per billion (ppb) of atmospheric formaldehyde in situ, using chromotropic acid, is described. A colorimetric sensor, coupled to a droplet of 15.5 muL chromotropic acid, was constructed and used to sample and quantify formaldehyde. The sensor was set up with two optical fibers, a right emitting diode (LED) and two photodiodes. The reference and transmitted light were measured by a photodetection arrangement that converts the signals into units of absorbance. Air was sampled around the chromotropic acid droplet. A purple product was formed and measured after the sampling terminated (typically 7 min). The response is proportional to the sampling period, analyte concentration and sample flow rate. The detection limit is similar to2 ppb and can be improved by using longer sampling times and/or a sampling flow rate higher than that used in this work, 200 mL min(-1). The present technique affords a simple, inexpensive near real-time measurement with very little reagent consumption. The method is selective and highly sensitive. This sensor could be used either for outdoor or indoor atmospheres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design and characteristics of a novel electrochemical system, which uses a drop as a renewable electroanalytical sensor, are described. This article describes the performance of the electrochemical system, the coupling of the experimental arrangement with flow injection technique and a demonstration of its applicability for the measurement of sulfide. The method is based on renewable drops of ferricyanide ions, buffered by borate. The ferrocyanide ions, product of the reaction between ferricyanide and sulfide ions, are oxidized on a platinum microelectrode and the current measured is related to sulfide concentration. The measurements can be done in continuous or static flow mode. In continuous mode, the detection limit is 5.0 x 10(-5) mol L-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and sensitive method for determining atmospheric ammonia (NH3), using a hanging drop, is described. A colorimetric sensor is composed of two optical fibers and the source of monochromatic light implemented was a red light emitting diode (LED) (635 nm). Preliminary experiments were carried out in order to optimize the geometry of the sensor. These tests showed that the best signal absorbance was obtained using a 22 muL deionized water drop for sampling the gas and as addition of 4 muL of each of the reactants to form the blue dye (indophenol). Some important analytical parameters were also studied, including sampling time and flow rate. The analytical curve was constructed with a concentration range of 3-20 ppbv of gaseous NH3 standard. The detection limit reached was of ca 0.5 ppbv. It was observed that formaldehyde and diethylamine did not interfere. However, studies showed that hydrogen sulfide caused a negative interference of 20%, when present in the atmosphere in a concentration equal to that of NE3. The method considered here was shown to be easy to apply, making it possible to make a determination every 17 min.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nephelometric technique based on a liquid drop is described for the measurement of atmospheric sulfur dioxide. A 40-mul drop of barium chloride and hydrogen peroxide solution is suspended in a flowing-air sampling stream. The sulfur (IV) collected is oxidized to sulfur (VI) and finally precipitated as barium sulfate. Nephelometric detection of drop is achieved by an appropriate arrangement consisting of an optical fiber contacting the drop and a photodiode placed at 90degrees relative to the fiber. The design and characteristics of this drop-based gas sensor system are described. The analytical response, as photocurrent, is proportional to the product of the sampling period and the sulfur dioxide concentration. The detection limit is ca. 1.1 mg m(-3) for a 10-min sampling time. The present technique is fairly rapid and simple, uses a small amount of reagent and is set up with low-cost equipment, making this system economically viable. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports the surface activity of phytase at the air-water interface, its interaction with lipid monolayers, and the construction of a new phytic acid biosensor on the basis of the Langmuir-Blodgett (LB) technique. Phytase was inserted in the subphase solution of dipalmitoylphosphatidylglycerol (DPPG) Langmuir monolayers, and its incorporation to the air-water interface was monitored with surface pressure measurements. Phytase was able to incorporate into DPPG monolayers even at high surface pressures, ca. 30 mN/m, under controlled ionic strength, pH, and temperature. Mixed Langmuir monolayers of phytase and DPPG were characterized by surface pressure-area and surface potential-area isotherms, and the presence of the enzyme provided an expansion in the monolayers ( when compared to the pure lipid at the interface). The enzyme incorporation also led to significant changes in the equilibrium surface compressibility (in-plane elasticity), especially in liquid-expanded and liquid-condensed regions. The dynamic surface elasticity for phytase-containing interfaces was investigated using harmonic oscillation and axisymmetric drop shape analysis. The insertion of the enzyme at DPPG monolayers caused an increase in the dynamic surface elasticity at 30 mN m(-1), indicating a strong interaction between the enzyme and lipid molecules at a high-surface packing. Langmuir-Blodgett (LB) films containing 35 layers of mixed phytase-DPPG were characterized by ultraviolet-visible and fluorescence spectroscopy and crystal quartz microbalance nanogravimetry. The ability in detecting phytic acid was studied with voltammetric measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical behavior of a carbon paste electrode modified (CPEM) with N,N′-ethylenebis(salicylideneiminato)oxovanadium(IV) complex ([(VO)-O-IV(Salen)]) was investigated as a new sensor for cysteine. Cyclic voltammetry at the modified electrode in 0.1 mol L-1 KCl Solution (pH 5.0) showed a single-electron reduction/oxidation of the Couple VO3+/VO2+. The CPEM with [VO(Salen)] presented good electrochemical stability in a wide pH range (4.0-10.0) and an ability to electrooxidate cysteine at 0.65 V versus SCE. These results demonstrate the viability of the use of this modified electrode as an amperometric sensor for cysteine determination. © 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postbloom fruit drop (PFD), caused by Colletotrichum acutatum, produces blossom blight, fruit abscission and persistent calyces. in groves of Pera-Rio and Natal sweet orange located in Santa Cruz do Rio Pardo and Rincao, São Paulo, Brazil, four experiments were carried out to evaluate the effectiveness of fungicides sprayed alone or as mixtures, at different flowering stages for the control of PFD of citrus. The number of symptomatic flowers, the percentage of fruit set (FS), and the relationship between persistent calyces and total fruit weight per plant were evaluated. The fungicides carbendazim and folpet were sprayed at 0.50 ml and 1.25 ga.i. l(-1) of water, respectively, were superior by all the criteria to the other treatments. Carbendazim and folpet fungicides performed best when they were applied at the green bud through hollow ball stages. Difenoconazole, independent of application timing, was less effective by all criteria used. Application of mancozeb at 1.60 ga.i. l(-1) at the green bud stage followed by application of mancozeb in a tank mix with carbendazim or folpet at 1.0 ml and 1.25 g a.i. l(-1), respectively, during green bud bloom and hollow ball stages were effective for disease control. Carbendazim combined with 0.25% KNO3, reduced the number of persistent calyces and increased fruit production significantly. Applications must be made between green bud and hollow ball stages for best control. Applications only at hollow ball or open flower stages did not provide effective disease control. (C)2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Teve-se o objetivo de verificar a possível seleção de sementes de milho - arredondadas e achatadas - no processo de semeadura com disco perfurado horizontal, bem como as conseqüências na distribuição longitudinal. Os registros dos dados deram-se pela avaliação visual de duas pessoas, com contador manual, no final da esteira carpetada em movimento de 1,54 m s-1, com 4,60 m de perspectiva para avaliação. Assim, um sensor registrava o número de orifícios do disco horizontal que devia passar pelo tubo condutor, e os espaçamentos falhos e múltiplos eram computados por pessoas diferentes. Os espaçamentos aceitáveis foram obtidos pela subtração dos espaçamentos falhos e múltiplos do total contabilizado. A medição do comprimento e espessura das sementes foi realizada com auxílio de paquímetro. Não houve alterações significativas nas variáveis estudadas, até a passagem de 55 mil orifícios do disco horizontal pelo tubo condutor; portanto, não houve seleção de sementes de milho durante a simulação do processo de semeadura.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan is alternated with sulfonated polystyrene (PSS) to build layer-by-layer (LBL) films that are used as sensing units in an electronic tongue. Using impedance spectroscopy as the principle method of detection, an array using chitosan/PSS LBL film and a bare gold electrode as the sensing units was capable of distinguishing the basic tastes - salty, sweet, bitter, and sour - to a concentration below the human threshold. The suitability of chitosan as a sensing material was confirmed by using this sensor to distinguish red wines according to their vintage, vineyard, and brands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An oxovanadium-salen complex (NAP-ethylene-bis(salicylidenciminato) oxovanadium) thin film deposited on a graphite-polyurethane electrode was investigated with regard to its potential use for detection of L-dopa in flow injection system. The oxovanadium(IV)/oxovanadium(V) redox couple of the modified electrode was found to mediate the L-dopa oxidation before its use in the FIA system. Experimental parameters, such as pH of the carrier solution, flow rate, sample volume injection and probable interferents were investigated. Under the optimized FIA conditions, the amperometric signal was linearly dependent on the L-dopa concentration over the range 1.0 x 10(-1) to 1.0 x 10(-4) mol L-1 (I-anodic, mu A) = 0.01 + 0.25 [L-dopa mu mol L-1]) with a detection limit (S/N = 3) of 8.0 x 10(-7) mol L-1 and a sampling frequency of 90 h(-1) was achieved. For a concentration of 1.0 x 10(-5) mol L-1 L-dopa, the R.S.D. of nine consecutive measurements was 3.7%. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical preparation described herein involved the electrocatalytic oxidation of sulfite on a platinum electrode modified with nanostructured copper salen (salen=N,N'-ethylenebis(salicylideneiminato)) polymer films. The complex was prepared and electropolymerized at a platinum electrode in a 0.1 mol L-1 solution of tetrabutylammonium perchlorate in acetonitrile by cyclic voltammetry between 0 and 1.4V vs. SCE. After cycling the modified electrode in a 0.50 mol L-1 KCI solution, the estimated surface concentration was found to be equal to 2.2 x 10(-9) Mol cm(-2). This is a typical behavior of an electrode surface immobilized with a redox couple that can usually be considered as a reversible single-electron reduction/oxidation of the copper(II)/copper(III) couple. The potential peaks of the modified electrode in the electrolyte solution (aqueous) containing the different anions increase with the decrease of the ionic radius, demonstrating that the counter-ions influence the voltammetric behavior of the sensor. The potential peak was found to be linearly dependent upon the ratio [ionic charge]/[ionic radius]. The oxidation of the sulfite anion was performed at the platinum electrode at +0.9V vs. SCE. However, a significant decrease in the overpotential (+0.45V) was obtained while using the sensor, which minimized the effect of oxidizable interferences. A plot of the anodic current vs. the sulfite concentration for chronoamperometry (potential fixed = +0.45V) at the sensor was linear in the 4.0 x 10(-6) to 6.9 x 10(-5) mol L-1 concentration range and the concentration limit was 1.2 x 10(-6) mol L-1. The reaction order with respect to sulfite was determined by the slope of the logarithm of the current vs. the logarithm of the sulfite concentration. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An amperometric oxygen sensor based on a polymeric nickel-salen (salen = N,N'-ethylene bis(salicylideneiminato)) film coated platinum electrode was developed. The sensor was constructed by electropolymerization of nickel-salen complex at platinum electrode in acetonitrile/tetrabutylammonium perchlorate by cyclic voltammetry. The voltammetric behavior of the sensor was investigated in 0.5 mol L-1 KCl solution in the absence and presence of molecular oxygen. Thus, with the addition of oxygen to the solution, the increase of cathodic peak current (at -0.25 V vs. saturated calomel electrode (SCE)) of the modified electrode was observed. This result shows that the nickel-salen film on electrode surface promotes the reduction of oxygen. The reaction can be brought about electrochemically, where the nickel(II) complex is first reduced to a nickel(I) complex at the electrode surface. The nickel(I) complex then undergoes a catalytic oxidation by the molecular oxygen in solution back to the nickel(II) complex, which can then be electrochemically re-reduced to produce an enhancement of the cathodic current. The Tafel plot analyses have been used to elucidate the kinetics and mechanism of the oxygen reduction. A plot of the cathodic current vs. the dissolved oxygen concentration for chronoamperometry (fixed potential = -0.25 V vs. SCE) at the sensor was linear in the 3.95-9.20 mg L-1 concentration range and the concentration limit was 0.17 mg L-1 O-2. The proposed electrode is useful for the quality control and routine analysis of dissolved oxygen in commercial samples and environmental water. The results obtained for the levels of dissolved oxygen are in agreement with the results obtained with a commercial O-2 sensor. (C) 2012 Elsevier B.V. All rights reserved.