6 resultados para driving circuit frame rate
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A novel multisampling time-domain architecture for CMOS imagers with synchronous readout and wide dynamic range is proposed. The architecture was implemented in a prototype of imager with 32x32 pixel array fabricated in AMS CMOS 0.35νm and was characterized for sensitivity and color response. The pixel is composed of an n+/psub photodiode, a comparator and a D flip-flop having 16% fill-factor and 30νmx26νm dimensions. The multisampling architecture requires only a 1 bit per pixel memory instead of 8 bits which is typical for time-domain active pixel architectures. The advantage is that the number of transistors in the pixel is low, saving area and providing higher fill-factor. The maximum frame rate is analyzed as a function of number of bits and array size. The analysis shows that it is possible to achieve high frame rates and operation in video mode with 10 bits. Also, we present analysis for the impact of comparator offset voltage in the fixed pattern noise. Copyright 2007 ACM.
Resumo:
Despite the frequent use of stepping motors in robotics, automation, and a variety of precision instruments, they can hardly be found in rotational viscometers. This paper proposes the use of a stepping motor to drive a conventional constant-shear-rate laboratory rotational viscometer to avoid the use of velocity sensor and gearbox and, thus, simplify the instrument design. To investigate this driving technique, a commercial rotating viscometer has been adapted to be driven by a bipolar stepping motor, which is controlled via a personal computer. Special circuitry has been added to microstep the stepping motor at selectable step sizes and to condition the torque signal. Tests have been carried out using the prototype to produce flow curves for two standard Newtonian fluids (920 and 12 560 mPa (.) s, both at 25 degrees C). The flow curves have been obtained by employing several distinct microstep sizes within the shear rate range of 50-500 s(-1). The results indicate the feasibility of the proposed driving technique.
Resumo:
The intra- and intermolecular rates of degradation of cephaclor were determined with and without hexadecyltrimethylammonium bromide (CTABr). Micellar-derived spectral shifts were used to measure the association of the ionic forms as well as to determine the effect of CTABr on the apparent acid dissociation constant of the antibiotic. The rate of degradation of cephaclor increased with detergent and was salt sensitive. Micellar effects were analyzed quantitatively within the frame-work of the speudophase ion exchange model. All experimental data were fitted to this model which was used to predict the combined effects of pH and detergent concentration. Micelles increased the rate of OH- attack on cephaclor; most of the effect was due to the concentration of reagents in the micellar pseudophase. The intramolecular degradation was catalyzed 25-fold by micelles, and a working hypothesis to rationalize this effect is proposed. The results demonstrate that quantitative analysis can be utilized to assess and predict effects of detergents on drug stability.
Resumo:
Session ratings of perceived exertion (SRPE) have been considered to provide a quantitative evaluation of the entire exercise session in different types of resistance training. In this study we investigated the ability of SRPE to assess exercise strain in a circuit weight training (CWT) workout and the influence of time lag to report SRPE. Ten healthy male volunteers (22.3±2.8 years, 72.5±6.5kg, and 175±5cm) completed a CWT session involving three circuits of five multiple joint exercises with single sets of 20 repetitions at 30% one repetition maximum (1-RM). Heart rate [63.7-75.0% maximum heart rate (%HRmax)], blood lactate (5.6-7.6mM) as well as overall, chest, and active muscle RPE increased significantly (p<0.05) throughout the CWT, but no significant differences were found between ratings of perceived exertion (RPE) types. Overall, chest and active muscle SRPE were accessed 10 minutes, 20 minutes, and 30 minutes after the workout, with no significant main effects or SRPE type×time interaction being found (p>0.05). Finally, no significant differences (p>0.05) were observed between averaged SRPE and RPE responses (overall: 3.7±0.6 vs. 3.5±0.9; chest: 3.8±0.7 vs. 3.6±0.8; active muscle; 3.7±0.7 vs. 3.5±0.7). These results suggest SRPE, irrespective of the moment at which it is taken, to be a useful tool for assessing global exercise strain in a CWT workout, providing coaches, physicians, and exercisers a practical way for monitoring this type of resistance training. © 2013.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)