11 resultados para distributed cognition theory

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The metal-insulator or metal-amorphous semiconductor blocking contact is still not well understood. Here, we discuss the steady state characteristics of a non-intimate metal-insulator Schottky barrier. We consider an exponential distribution (in energy) of impurity states in addition to impurity states at a single energy level within the depletion region. We present analytical expressions for the electrical potential, field, thickness of depletion region, capacitance, and charge accumulated in the depletion region. We also discuss ln I versus V(ap) data. Finally, we compare the characteristics in three cases: (i) impurity states at only a single energy level; (ii) uniform energy distribution of impurity states; and (iii) exponential energy distribution of impurity states.In general, the electrical characteristics of Schottky barriers and metal-insulator-metal structures with Schottky barriers depend strongly on the energy distribution of impurity states.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The metal-insulator (or amorphous semiconductor) blocking contact is still not well understood. In the present paper, we discuss the non steady state characteristics of Metal-lnsulator-Metal Structure with non-intimate blocking contacts (i.e. Metal-Oxide-Insulator-Metal Structure). We consider a uniform distribution (in energy) of impurity states in addition to impurity states at a single energy level within the depletion region. We discuss thermal as well as isothermal characteristics and present expressions for the temperature of maximum current (T-m) and a method to calculate the density of uniformly distributed impurity states. The variation of mobility with electrical field has also been considered. Finally we plot the theoretical curves under different conditions. The present results are closing into available experimental results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We discuss non-steady state electrical characteristics of a metal-insulator-metal structure. We consider an exponential distribution (in energy) of impurity states in addition to impurity states at a single energy level within the depletion region. We discuss thermal as well as isothermal characteristics and present an expression for the temperature of maximum current (Tm) and a method to calculate the density of exponentially distributed impurity states. We plot the theoretical curves for various sets of parameters and the variation of Tm, and Im (maximum current) with applied potential for various impurity distributions. The present model can explain the available experimental results. Finally we compare the non-steady state characteristics in three cases: (i) impurity states only at a single energy level, (ii) uniform energetic distribution of impurity states, and (iii) exponential energetic distribution of impurity states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Processing efficiency theory predicts that anxiety reduces the processing capacity of working memory and has detrimental effects on performance. When tasks place little demand on working memory, the negative effects of anxiety can be avoided by increasing effort. Although performance efficiency decreases, there is no change in performance effectiveness. When tasks impose a heavy demand on working memory, however, anxiety leads to decrements in efficiency and effectiveness. These presumptions were tested using a modified table tennis task that placed low (LWM) and high (HWM) demands on working memory. Cognitive anxiety was manipulated through a competitive ranking structure and prize money. Participants' accuracy in hitting concentric circle targets in predetermined sequences was taken as a measure of performance effectiveness, while probe reaction time (PRT), perceived mental effort (RSME), visual search data, and arm kinematics were recorded as measures of efficiency. Anxiety had a negative effect on performance effectiveness in both LWM and HWM tasks. There was an increase in frequency of gaze and in PRT and RSME values in both tasks under high vs. low anxiety conditions, implying decrements in performance efficiency. However, participants spent more time tracking the ball in the HWM task and employed a shorter tau margin when anxious. Although anxiety impaired performance effectiveness and efficiency, decrements in efficiency were more pronounced in the HWM task than in the LWM task, providing support for processing efficiency theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metal-insulator or metal-amorphous semiconductor blocking contact is still not well understood. Here, the intimate metal-insulator and metal-oxide-insulator contact are discussed. Further, the steady-state characteristics of metal-oxide-insulator-metal structures are also discussed. Oxide is an insulator with wider energy band gap (about 50 Å thick). A uniform energetic distribution of impurities is considered in addition to impurities at a single energy level inside the surface charge region at the oxide-insulator interface. Analytical expressions are presented for electrical potential, field, thickness of the depletion region, capacitance, and charge accumulated in the surface charge region. The electrical characteristics are compared with reference to relative densities of two types of impurities. ln I is proportional to the square root of applied potential if energetically distributed impurities are relatively important. However, distribution of the electrical potential is quite complicated. In general energetically distributed impurities can considerably change the electrical characteristics of these structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we introduce a DAI approach called hereinafter Fuzzy Distributed Artificial Intelligence (FDAI). Through the use of fuzzy logic, we have been able to develop mechanisms that we feel may effectively improve current DAI systems, giving much more flexibility and providing the subsidies which a formal theory can bring. The appropriateness of the FDAI approach is explored in an important application, a fuzzy distributed traffic-light control system, where we have been able to aggregate and study several issues concerned with fuzzy and distributed artificial intelligence. We also present a number of current research directions necessary to develop the FDAI approach more fully.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper, we discuss a generalized theory of electrical characteristics for amorphous semiconductor (or insulator) Schottky barriers, considering: (i) surface states, (ii) doping impurity states at a single energy level and (iii) energetically distributed bulk impurity states. We also consider a thin oxide layer (≈10 Å) between metal and semiconductor. We develop current versus applied potential characteristics considering the variation of the Fermi level very close to contact inside the semiconductor and decrease in barrier height due to the image force effect as well as potential fall on the oxide layer. Finally, we discuss the importance of each parameter, i.e. surface states, distributed impurity states, doping impurity states, thickness of oxide layer etc. on the log I versus applied potential characteristics. The present theory is also applicable for intimate contact, i.e. metal-semiconductor contact, crystalline material structures or for Schottky barriers in insulators or polymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article shows a transmission line model developed directly in the phase domain. The proposed model is based on the relationships between the phase currents and voltages at both the sending and receiving ends of a single-phase line. These relationships, established using an ABCD matrix, were extended to multi-phase lines. The proposed model was validated by using it to represent a transmission line during short-and open-circuit tests. The results obtained with the proposed model were compared with results obtained with a classical model based on modal decomposition. These comparisons show that proposed model was correctly developed. © 2013 Taylor and Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A transmission line is characterized by the fact that its parameters are distributed along its length. This fact makes the voltages and currents along the line to behave like waves and these are described by differential equations. In general, the differential equations mentioned are difficult to solve in the time domain, due to the convolution integral, but in the frequency domain these equations become simpler and their solutions are known. The transmission line can be represented by a cascade of π circuits. This model has the advantage of being developed directly in the time domain, but there is a need to apply numerical integration methods. In this work a comparison of the model that considers the fact that the parameters are distributed (Universal Line Model) and the fact that the parameters considered concentrated along the line (π circuit model) using the trapezoidal integration method, and Simpson's rule Runge-Kutta in a single-phase transmission line length of 100 km subjected to an operation power. © 2003-2012 IEEE.