8 resultados para demineralisation

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: This in vitro study assessed the effect of a 4% TiF4 varnish on demineralisation and remineralisation of sound enamel and artificial carious enamel lesions, respectively.Methods: Bovine sound and carious enamel (n = 110) were randomly allocated to each type of varnish: Duraphat (R))-D (NaF, 2.26%F, pH 4.5, Colgate-Brazil, n = 30), Duofluorid (R)-F (NaF, 2.71%F, pH 8.0, FGM-Brazil, n = 30), TiF4-T (2.45%F, pH 1.0, FGM-Brazil, n = 30) and no-fluoride-P (FGM-Brazil, pH 5.0, n = 20). For the formation of artificial enamel caries, half of the blocks were immersed in 32 mL buffer acetate solution (16 h), whereas the other half was maintained sound. The varnishes were applied onto the enamel surfaces. Thus, the samples were subjected to pH cycles (37 degrees C) for 7 days. The response variables tested were surface and cross-sectional hardness. Data were tested using Kruskal-Wallis test (p < 0.05).Results: All F varnishes significantly reduced demineralisation and increased remineralisation in comparison to placebo. The TiF4 did not significantly reduce the surface enamel softening when compared with the other F varnishes, but it decreased the loss of subsurface hardness to the same extent. In enamel blocks with previous artificial carious lesions, the TiF4 significantly improved the rehardening compared to the other varnishes up to 30 mu m depth.Conclusions: The TiF4 varnish was able to decrease the demineralisation and increase the remineralisation of previously sound and carious enamel, respectively. It was equally effective compared to NaF varnishes on reducing the demineralisation at subsurface, but it was more effective on improving the remineralisation at surface and subsurface. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Iron ions (Fe2+) have been shown to be cariostatic in many studies particularly by their ability to reduce bacterial metabolism. Nevertheless, the role of iron ions on dissolution of enamel is unexplored. The aim of the present study was therefore to investigate the protective effect of increasing concentrations (0-120 mmol/L) of Fe2+ on the dissolution of enamel.Design: Enamel powder was subjected to acetic acid made with increasing concentrations with respect to FeSO4 center dot 7H(2)O. In order to determine the amount of enamel dissolved, the phosphate released in the medium was analysed spectrophotometrically using the Fiske-Subarrow method. Data were tested using Kruskall-Wall and Dunn's tests (p < 0.05). The degree of protection was found to approach maximum at about 15 mmol/L Fe2+. Higher concentrations of Fe2+ did not have an extra effect on inhibition of dissolution of enamel powder. In the next step, the protective effect of 15 mmol/L Fe2+ against mineral dissolution of the bovine enamel was evaluated using a simple abiotic model system. Enamel blocks were exposed to a sequence of seven plastic vials, each containing 1 mL of 10 mmol/L acetic acid. The acid in vial 4 was made 15 mmol/L with respect to FeSO4 center dot 7H(2)O. The mineral dissolved during each challenge was thus determined by phosphate released as described above. Data were tested using two-way ANOVA (p < 0.05). Results: Lower demineralisation (around 45%) was found in vial 4 (with Fe) that continued stable until vial 7.Conclusions: Thus, our data suggest that Fe2+, can be effective on inhibition of dissolution of enamel and that this effect may be durable. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: The aim of this in vitro study was to assess the effects of saliva substitutes (modified with respect to calcium, phosphates, and fluorides) in combination with a high-concentrated fluoride toothpaste on demineralised dentin.Methods: Before and after demineralisation of bovine dentin specimens (subsurface lesions; 37 degrees C, pH 5.0, 5 d), one-quarter of each specimen's surface was covered with nail varnish (control of sound/demineralised tissue). Subsequently, specimens were exposed to original Saliva natura (saturation with respect to octacalciumphosphate [S(OCP)]: 0.03; SN 0), or to three lab-produced Saliva natura modifications (S(OCP): 1, 2, and 3; SN 1-3) for 2 and 5 weeks (37 degrees C). An aqueous solution (S(OCP): 2.5) served as positive control (PC). Two times daily (2 min each), Duraphat toothpaste (5000 ppm F(-); Colgate)/saliva substitute slurry (ratio 1:3) was applied gently. Differences in mineral losses (Delta Delta Z) and lesion depths (Delta LD) between values before and after exposure were microradiographically evaluated.Results: After both treatment periods specimens immersed in SN 0 revealed significantly higher mineral losses (lower Delta Delta Z values) and lesion depths (lower Delta LD) compared to PC (p < 0.05; ANOVA). After 5 weeks, specimens stored in SN 1 and 2 showed significantly higher mineral losses compared to PC (p < 0.05), while those stored in SN 3 showed similar results (p > 0.05). No differences in mineral loss could be observed between SN 2 and 3 (p > 0.05).Conclusions: Under the conditions of this limited protocol, the combination of Saliva natura solutions slightly saturated with respect to OCP in combination with a high-concentrated fluoride toothpaste enabled remineralisation of dentin in vitro. Crown Copyright (c) 2009 Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: This in situ blind crossover study investigated the effect of calcium (Ca) rinse prior to the use fluoride (F) dentifrice on remineralisation of artificially demineralised enamel and on the composition of biofilm. Design: During four phases of 14 days, 10 volunteers wore appliances containing two artificially demineralised bovine enamel blocks. Three times a day, they rinsed with 10 mL, of Ca (150 mM) or placebo rinse (1 min). A slurry (1:3, w/v) of F (1030 ppm) or placebo dentifrice was dripped onto the blocks. During I min, the volunteers brushed their teeth with the respective dentifrice. The appliance was replaced into the mouth and the volunteers rinsed with water. The biofilm formed on the blocks was analysed for F and Ca. Enamel alterations were evaluated by the percentage of surface microhardness change (%SMHC), cross-sectional microhardness (% mineral volume) and alkali-soluble F analysis. Data were analysed by ANOVA (p < 0.05). Results: the use of the Ca pre-rinse before the F dentifrice produced a six- and four-fold increase in biofilm F and Ca concentrations, respectively. For enamel, the remineralisation was significantly improved by the Ca pre-rinse when compared to the other treatments. There was a significantly higher concentration of alkali-soluble F in enamel when the F dentifrice was used, but the Ca pre-rinse did not have any significant additive effect. Conclusions: According to our protocol, the Ca pre-rinse significantly increased biofilm F concentration and, regardless the use of F dentifrice, significantly enhanced the remineralisation of artificially demineralised enamel. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: This in situ/ex vivo study evaluated whether a rinse with an iron solution could reduce wear and the percentage of microhardness change of human enamel and dentine submitted to erosion followed by brushing after 1 or 30 min.Design: During 2 experimental 5-day crossover phases (wash-out period of 10 days), 10 volunteers wore intraoral palatal devices, with 12 specimens (6 of enamel and 6 of dentine) arranged in 3 horizontal rows (4 specimens each). In one phase, the volunteers immersed the device for 5 min in 150 mL of cola drink, 4 times a day. Immediately after immersion, no treatment was performed in one row. The other row was brushed after 1 min using a fluoride dentifrice and the device was replaced into mouth. After 30 min, the remaining row was brushed. In the other phase, the procedures were repeated, but after immersion the volunteers rinsed for 1 min with 10 mL of a 10 mM ferrous sulphate solution. Changes in surface microhardness (%SMH) and wear (profilometry) of enamel and dentine were measured. Data were tested using ANOVA and Tukey's tests (p < 0.05).Results: the enamel presented more wear than dentine, under all experimental conditions. The iron solution caused a significant reduction on the %SMH in enamel, and a significant reduction on the wear in dentine, regardless the other conditions.Conclusions: Rinsing with an iron solution after an erosive attack, followed or not by an abrasive episode, may be a viable alternative to reduce the loss of dental structure. (c) 2006 Elsevier Ltd. All rights reserved.