105 resultados para data analysis software
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The objective of the present article is to identify and discuss the possibilities of using qualitative data analysis software in the framework of procedures proposed by SDI (socio-discursive interactionism), emphasizing free distribuited software or free versions of commercial software. A literature review of software for qualitative data analysis in the area of social sciences and humanities, focusing on language studies is presented. Some tools, such as: Wef-tQDA, MLCT, Yoshikoder and Tropes are examined with their respective features and functions. The software called Tropes is examined in more detail because of its particular relation with language and semantic analysis, as well as its embeded classification of linguistic elements such as, types of verbs, adjectives, modalizations, etc. Although trying to completely automate an SDI based analysis is not feasible, the programs appear to be powerful helpers in analyzing specific questions. Still, it seems important to be familiar with software options and use different applications in order to obtain a more diversified vision of the data. It is up to the researcher to be critical of the analysis provided by the machine.
Resumo:
In this paper a set of Brazilian commercial gasoline representative samples from São Paulo State, selected by HCA, plus six samples obtained directly from refineries were analysed by a high-sensitive gas chromatographic (GC) method ASTM D6733. The levels of saturated hydrocarbons and anhydrous ethanol obtained by GC were correlated with the quality obtained from Brazilian Government Petroleum, Natural Gas and Biofuels Agency (ANP) specifications through exploratory analysis (HCA and PCA). This correlation showed that the GC method, together with HCA and PCA, could be employed as a screening technique to determine compliance with the prescribed legal standards of Brazilian gasoline.
Resumo:
Linear mixed effects models are frequently used to analyse longitudinal data, due to their flexibility in modelling the covariance structure between and within observations. Further, it is easy to deal with unbalanced data, either with respect to the number of observations per subject or per time period, and with varying time intervals between observations. In most applications of mixed models to biological sciences, a normal distribution is assumed both for the random effects and for the residuals. This, however, makes inferences vulnerable to the presence of outliers. Here, linear mixed models employing thick-tailed distributions for robust inferences in longitudinal data analysis are described. Specific distributions discussed include the Student-t, the slash and the contaminated normal. A Bayesian framework is adopted, and the Gibbs sampler and the Metropolis-Hastings algorithms are used to carry out the posterior analyses. An example with data on orthodontic distance growth in children is discussed to illustrate the methodology. Analyses based on either the Student-t distribution or on the usual Gaussian assumption are contrasted. The thick-tailed distributions provide an appealing robust alternative to the Gaussian process for modelling distributions of the random effects and of residuals in linear mixed models, and the MCMC implementation allows the computations to be performed in a flexible manner.
Resumo:
In this work, initial crystallographic studies of human haemoglobin (Hb) crystallized in isoionic and oxygen-free PEG solution are presented. Under these conditions, functional measurements of the O-2-linked binding of water molecules and release of protons have evidenced that Hb assumes an unforeseen new allosteric conformation. The determination of the high-resolution structure of the crystal of human deoxy-Hb fully stripped of anions may provide a structural explanation for the role of anions in the allosteric properties of Hb and, particularly, for the influence of chloride on the Bohr effect, the mechanism by which Hb oxygen affinity is regulated by pH. X-ray diffraction data were collected to 1.87 Angstrom resolution using a synchrotron-radiation source. Crystals belong to the space group P2(1)2(1)2 and preliminary analysis revealed the presence of one tetramer in the asymmetric unit. The structure is currently being refined using maximum-likelihood protocols.
Resumo:
Hemoglobin remains, despite the enormous amount of research involving this molecule, as a prototype for allosteric models and new conformations. Functional studies carried out on Hemoglobin-I from the South-American Catfish Liposarcus anisitsi [1] suggest the existence of conformational states beyond those already described for human hemoglobin, which could be confirmed crystallographically. The present work represents the initial steps towards that goal.
Resumo:
The present study introduces a multi-agent architecture designed for doing automation process of data integration and intelligent data analysis. Different from other approaches the multi-agent architecture was designed using a multi-agent based methodology. Tropos, an agent based methodology was used for design. Based on the proposed architecture, we describe a Web based application where the agents are responsible to analyse petroleum well drilling data to identify possible abnormalities occurrence. The intelligent data analysis methods used was the Neural Network.
Resumo:
In this paper is reported the use of the chromatographic profiles of volatiles to determine disease markers in plants - in this case, leaves of Eucalyptus globulus contaminated by the necrotroph fungus Teratosphaeria nubilosa. The volatile fraction was isolated by headspace solid phase microextraction (HS-SPME) and analyzed by comprehensive two-dimensional gas chromatography-fast quadrupole mass spectrometry (GC. ×. GC-qMS). For the correlation between the metabolic profile described by the chromatograms and the presence of the infection, unfolded-partial least squares discriminant analysis (U-PLS-DA) with orthogonal signal correction (OSC) were employed. The proposed method was checked to be independent of factors such as the age of the harvested plants. The manipulation of the mathematical model obtained also resulted in graphic representations similar to real chromatograms, which allowed the tentative identification of more than 40 compounds potentially useful as disease biomarkers for this plant/pathogen pair. The proposed methodology can be considered as highly reliable, since the diagnosis is based on the whole chromatographic profile rather than in the detection of a single analyte. © 2013 Elsevier B.V..
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Introduction. Gait becomes the individual independence for their daily activities. The functional deficit caused by central lesion as stroke, makes difficult this motor independence, mainly the locomotion. Objective. Analyze the kinematics gait in stroke patients. Method. It was included 8 patients with clinical diagnosis of stroke, 4 with hemiparesia on the right and 4 on the left. It was analyzed gait spatial-temporal parameters as: length, duration and average speed of the step, using the register in videotape and the software of image 6.3 Dvideow Barros. Results. All patients presented alterations in the kinematics standards of the gait, with lesser duration and length of step, and greater speed than normal subjects. Conclusion. The motor disorder caused by the central lesions produces alterations in the kinematics standards of the gait, in order to adapt the neuro-sensorial sequels, the demands of the task and the way where they live.
Resumo:
Background: High plasma uric acid (UA) is a prerequisite for gout and is also associated with the metabolic syndrome and its components and consequently risk factors for cardiovascular diseases. Hence, the management of UA serum concentrations would be essential for the treatment and/or prevention of human diseases and, to that end, it is necessary to know what the main factors that control the uricemia increase. The aim of this study was to evaluate the main factors associated with higher uricemia values analyzing diet, body composition and biochemical markers. Methods. 415 both gender individuals aged 21 to 82 years who participated in a lifestyle modification project were studied. Anthropometric evaluation consisted of weight and height measurements with later BMI estimation. Waist circumference was also measured. The muscle mass (Muscle Mass Index - MMI) and fat percentage were measured by bioimpedance. Dietary intake was estimated by 24-hour recalls with later quantification of the servings on the Brazilian food pyramid and the Healthy Eating Index. Uric acid, glucose, triglycerides (TG), total cholesterol, urea, creatinine, gamma-GT, albumin and calcium and HDL-c were quantified in serum by the dry-chemistry method. LDL-c was estimated by the Friedewald equation and ultrasensitive C-reactive protein (CRP) by the immunochemiluminiscence method. Statistical analysis was performed by the SAS software package, version 9.1. Linear regression (odds ratio) was performed with a 95% confidence interval (CI) in order to observe the odds ratio for presenting UA above the last quartile (♂UA > 6.5 mg/dL and ♀ UA > 5 mg/dL). The level of significance adopted was lower than 5%. Results: Individuals with BMI ≥ 25 kg/m§ssup§2§esup§ OR = 2.28(1.13-4.6) and lower MMI OR = 13.4 (5.21-34.56) showed greater chances of high UA levels even after all adjustments (gender, age, CRP, gamma-gt, LDL, creatinine, urea, albumin, HDL-c, TG, arterial hypertension and glucose). As regards biochemical markers, higher triglycerides OR = 2.76 (1.55-4.90), US-CRP OR = 2.77 (1.07-7.21) and urea OR = 2.53 (1.19-5.41) were associated with greater chances of high UA (adjusted for gender, age, BMI, waist circumference, MMI, glomerular filtration rate, and MS). No association was found between diet and UA. Conclusions: The main factors associated with UA increase were altered BMI (overweight and obesity), muscle hypotrophy (MMI), higher levels of urea, triglycerides, and CRP. No dietary components were found among uricemia predictors. © 2013 de Oliveira et al.; licensee BioMed Central Ltd.
Resumo:
This work presents one software developed to process solar radiation data. This software can be used in meteorological and climatic stations, and also as a support for solar radiation measurements in researches of solar energy availability allowing data quality control, statistical calculations and validation of models, as well as ease interchanging of data. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of the present study was to investigate the effect of data structure on estimated genetic parameters and predicted breeding values of direct and maternal genetic effects for weaning weight (WW) and weight gain from birth to weaning (BWG), including or not the genetic covariance between direct and maternal effects. Records of 97,490 Nellore animals born between 1993 and 2006, from the Jacarezinho cattle raising farm, were used. Two different data sets were analyzed: DI_all, which included all available progenies of dams without their own performance; DII_all, which included DI_all + 20% of recorded progenies with maternal phenotypes. Two subsets were obtained from each data set (DI_all and DII_all): DI_1 and DII_1, which included only dams with three or fewer progenies; DI_5 and DII_5, which included only dams with five or more progenies. (Co)variance components and heritabilities were estimated by Bayesian inference through Gibbs sampling using univariate animal models. In general, for the population and traits studied, the proportion of dams with known phenotypic information and the number of progenies per dam influenced direct and maternal heritabilities, as well as the contribution of maternal permanent environmental variance to phenotypic variance. Only small differences were observed in the genetic and environmental parameters when the genetic covariance between direct and maternal effects was set to zero in the data sets studied. Thus, the inclusion or not of the genetic covariance between direct and maternal effects had little effect on the ranking of animals according to their breeding values for WW and BWG. Accurate estimation of genetic correlations between direct and maternal genetic effects depends on the data structure. Thus, this covariance should be set to zero in Nellore data sets in which the proportion of dams with phenotypic information is low, the number of progenies per dam is small, and pedigree relationships are poorly known. (c) 2012 Elsevier B.V. All rights reserved.