3 resultados para cyanobacterial bloom control

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Postbloom fruit drop (PFD), caused by Colletotrichum acutatum, produces blossom blight, fruit abscission and persistent calyces. in groves of Pera-Rio and Natal sweet orange located in Santa Cruz do Rio Pardo and Rincao, São Paulo, Brazil, four experiments were carried out to evaluate the effectiveness of fungicides sprayed alone or as mixtures, at different flowering stages for the control of PFD of citrus. The number of symptomatic flowers, the percentage of fruit set (FS), and the relationship between persistent calyces and total fruit weight per plant were evaluated. The fungicides carbendazim and folpet were sprayed at 0.50 ml and 1.25 ga.i. l(-1) of water, respectively, were superior by all the criteria to the other treatments. Carbendazim and folpet fungicides performed best when they were applied at the green bud through hollow ball stages. Difenoconazole, independent of application timing, was less effective by all criteria used. Application of mancozeb at 1.60 ga.i. l(-1) at the green bud stage followed by application of mancozeb in a tank mix with carbendazim or folpet at 1.0 ml and 1.25 g a.i. l(-1), respectively, during green bud bloom and hollow ball stages were effective for disease control. Carbendazim combined with 0.25% KNO3, reduced the number of persistent calyces and increased fruit production significantly. Applications must be made between green bud and hollow ball stages for best control. Applications only at hollow ball or open flower stages did not provide effective disease control. (C)2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Postbloom fruit drop (PFD) of citrus, caused by Colletotrichum acutatum, infects petals of citrus flowers and produces orange-brown lesions that induce the abscission of young fruitlets and the retention of calyces. Proper timing of fungicide applications is essential for good disease control. Different systems for timing of fungicide applications for control of PFD in a major citrus-growing region in southern São Paulo state in Brazil were evaluated from 1999 to 2002. The following programs were compared to an unsprayed control using counts of diseased flowers, persistent calyces, or fruit: (i) a phenology-based program currently recommended in Brazil with one application at early and another at peak bloom; (ii) the Florida PFD model; (iii) the postbloom fruit drop-fungicide application decision system (PFD-FAD), a new computer-assisted decision method; and (iv) grower's choice. In 1999, no disease developed, sprays applied with the phenology-based program had no effect, and the Florida PFD model saved two sprays compared with the phenology-based program. In 2000, PFD was moderate and the phenology-based and growers' choice treatments had a significantly lower number of persistent calyces and higher fruit numbers than the control, but no differences were found between those treatments and the PFD model. In 2001, PFD was severe with considerable yield loss. The PFD model, the phenology-based program, and the grower's choice reduced flower blight and the number of persistent calyces, and improved fruit yields with two to three applications, but the PFD-FAD achieved comparable yields with only one spray. In 2002, the disease was mild, with no yield loss, and the Florida PFD model and the PFD-FAD saved one spray compared with the other systems. The PFD model and the PFD-FAD were equally effective for timing fungicide applications to control PFD in Brazil. Scouting of trees is simpler with PFD-FAD; therefore, this system is recommended and should eliminate unnecessary sprays and reduce costs for growers.