10 resultados para culture sensitivity
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The use of essential oils in foods has attracted great interest, due to their antagonistic action against pathogenic microorganisms. However, this action is undesirable for probiotic foods, as products containing Lactobacillus rhamnosus. The aim of the present study was to measure the sensitivity profile of L. rhamnosus and a yogurt starter culture in fermented milk, upon addition of increasing concentrations of cinnamon, clove and mint essential oils. Essential oils were prepared by steam distillation, and chemically characterised by gas chromatography-mass spectrometry (GC-MS) and determination of density. Survival curves were obtained from counts of L. rhamnosus and the starter culture (alone and in combination), upon addition of 0.04% essential oils. In parallel, titratable acidity was monitored over 28 experimental days. Minimum inhibitory concentration values, obtained using the microdilution method in Brain Heart Infusion medium, were 0.025, 0.2 and 0.4% for cinnamon, clove and mint essential oils, respectively. Cinnamon essential oil had the highest antimicrobial activity, especially against the starter culture, interfering with lactic acid production. Although viable cell counts of L. rhamnosus were lower following treatment with all 3 essential oils, relative to controls, these results were not statistically significant; in addition, cell counts remained greater than the minimum count of 10(8)CFU/mL required for a product to be considered a probiotic. Thus, although use of cinnamon essential oil in yogurt makes starter culture fermentation unfeasible, it does not prevent the application of L. rhamnosus to probiotic fermented milk. Furthermore, clove and mint essential oil caused sublethal stress to L. rhamnosus.
Resumo:
Xanthomonas axonopodis pv. citri (Xac) causes citrus canker and the completion of the Xac genome sequence has opened up the possibility of investigating basic cellular mechanisms at the genomic level. Copper compounds have been extensively used in agriculture to control plant diseases. The copA and copB genes, identified by annotation of the Xac genome, encode homologues of proteins involved in copper resistance. A gene expression assay by Northern blotting revealed that copA and copB are expressed as a unique transcript specifically induced by copper. Synthesis of the gene products was also induced by copper, reaching a maximum level at 4 h after addition of copper to the culture medium. CopA was a cytosolic protein and CopB was detected in the cytoplasmic membrane. The gene encoding CopA was disrupted by the insertion of a transposon, leading to mutant strains that were unable to grow in culture medium containing copper, even at the lowest CUSO4 concentration tested (0.25 mM), whereas the wild-type strain was able to grow in the presence of 1 mM copper. Cell suspensions of the wild-type and mutant strains in different copper concentrations were inoculated in lemon leaves to analyse their ability to induce citrus canker symptoms. Cells of mutant strains showed higher sensitivity than the wild-type strain in the presence of copper, i.e. they were not able to induce citrus canker symptoms at high copper concentrations and exhibited a more retarded growth in planta.
Resumo:
Ants in the tribe Cephalotini are exceptional in that they maintain microorganisms in their digestive tract. To understand what these microorganisms mean to the ants, we observed the feeding habits of Cephalotes pusillus and Cephalotes atratus, finding that in nature they feed on extrafloral nectars, homopteran secretions, and bird droppings. Feeding the antibiotic kanamycin to colonies of C. pusillus in the laboratory kills them. Ants desiccate or starve rather than feed on liquids to which the antibiotics gentamycin and netilmycin have been added, but feed and survive on liquids containing nystatin, penicillin, and ampicillin. We identified over 10 microorganisms from the intestine of C. pusillus with different antibiotic-resistance patterns. The bacteria are from the genera Corynebacterium, Brevibacterium, Sphingobacterium, Ochrobactrum, Myroides, Brevundimonas, Alcaligenes, Stenotrophomonas, Moraxella, and Pseudomonas. We hypothesize that the microorganisms provide nutrients to the ants by synthesizing amino acids from carbohydrates and nitrates. We do not know whether the ants collect the bacteria from the environment, but they transmit them to their young. They culture them in their digestive tract, eventually feeding on them.
Resumo:
Several studies have demonstrated that lymphocytes from patients with Down syndrome (DS) exhibit an increased frequency of chromosome aberrations when they are exposed to ionizing radiation or to chemicals at the G0 or G1 phases of the cell cycle, but not at G2 when compared to normal subjects. To determine the susceptibility of DS lymphocytes at G2 phase, bleomycin, a radiomimetic agent, was used to induce DNA breaks in blood cultures from 24 Down syndrome patients. All the patients with DS showed free trisomy 21 (47,XX + 21 or 47,XY + 21). Individuals that showed an average number of chromatid breaks per cell higher than 0.8 were considered sensitive to the drug. No control child showed susceptibility to bleomycin, and among the 24 patients with DS, only one was sensitive to the drug. No significant difference was observed between the two groups, regarding chromatid break frequencies in treated G2 lymphocytes. The distribution of bleomycin-induced breaks in each group of chromosomes was similar for DS and controls. No significant difference was found in the response to bleomycin between male and female subjects. Probably, the main factor involved in chromosome sensitivity of lymphocytes from patients with DS is the phase of the cell cycle in which the cell is treated.
Resumo:
Tillandsia gardneri is a bromeliad with ornamental value and a wide geographical distribution over Brazil. However, due to habitat loss and illegal overcollection in the wild it is included as a vulnerable species in the official list of endangered plants of the State of Rio Grande do Sul, Brazil. The development of a protocol for T. gardneri seed propagation in vitro may be useful for reintroducing plants in their natural habitats, and for germplasm conservation. A difficult problem encountered during the establishment of an in vitro culture is explants disinfection, especially when working with endangered species, from which explant availability is restricted. Thus, the establishment of a sterilization protocol is crucial for the initiation and success of a micropropagation system for T. gardneri. The objective of this study was to evaluate the effect of sodium hypochlorite concentration and exposure time in seed and seedling surface disinfection, tissue sensitivity and development. Sodium hypochlorite solutions (10 or 20%/5, 10 or 15 min; 25%/5 or 10 min; and 50%/5 min) were effective in eliminating seed superficial contaminants. There was no significant difference among the effective sterilization treatments in relation to seed germination (%), and seedling length and number of leaves, after 120 days in vitro. Also, no damage to seed and seedling tissues were observed. Surface sterilization of seedlings, for initiation of an in vitro culture, required higher concentrations of sodium hypochlorite (25%/15 min; 20 or 50%/5, 10 or 15 min; and 40%/5 and 10 min) for controlling fungal and yeast contamination, compared to seed sterilization. No significant differences among these treatments were found in relation to seedling length and number of leaves, after 60 days in vitro.
Resumo:
Semiquantitative (Maki) and quantitative (Brun- Buisson) culture techniques were employed in the diagnosis of catheter-related bloodstream infections (CRBSI) in patients who have a short-term central venous catheter (inserted for 30 days). The diagnosis of CRBSI was based on the results of semiquantitative and quantitative culture of material from the removed catheters. Catheter tips (118) from 100 patients were evaluated by both methods. Semiquantitative analysis revealed 34 catheters (28.8%) colonized by ≥15 colonyforming units (cfu), while quantitative cultures (34 catheters, 28.8%) showed the growth of ≥103 cfu/mL. Bacteremia was confirmed in four patients by isolating microorganisms of identical species from both catheters and blood samples. Using the semiquantitative culture technique on short-term central venous catheter tips, we have shown that with a cut-off level of ≥15 cfu, the technique had 100.0% sensitivity, specificity of 68.4%, 25.0% positive predictive value (PPV) and 100.0% negative predictive value (NPV), efficiency of 71.4% and a prevalence of 9.5%. The quantitative method, with a cut-off limit of ≥103 cfu/mL, gave identical values: the sensitivity was 100.0%, specificity 68.4%, positive predictive value (PPV) 25.0%, negative predictive value (NPV) 100.0%, efficiency 71.4% and prevalence 9.5%. We concluded that the semiquantitative and quantitative culture methods, evaluated in parallel, for the first time in Brazil, have similar sensitivity and specificity. Keywords: central venous catheter; semi-quantitative culture; quantitative culture; catheter-related bacteremia.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Three Paracoccidioides brasiliensis antigens, namely a culture filtrate preparation, a somatic antigen and a mixture of equal parts of the two, were tested by two serological techniques against sera from patients with paracoccidioidomycosis, and in an in vivo delayed hypersensitivity model in mice. The antigen mixture was more sensitive than the two individual antigens for the evaluation of humoral and cellular immune response to P. brasiliensis, both in man and in experimental animals.