4 resultados para cost prediction
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The cost of maintenance makes up a large part of total energy costs in ruminants. Metabolizable energy (ME) requirement for maintenance (MEm) is the daily ME intake that exactly balances heat energy (HE). The net energy requirement for maintenance (NEm) is estimated subtracting MEm from the HE produced by the processing of the diet. Men cannot be directly measured experimentally and is estimated by measuring basal metabolism in fasted animals or by regression measuring the recovered energy in fed animals. MEm and NEm usually, but not always, are expressed in terms of BW0.75. However, this scaling factor is substantially empirical and its exponent is often inadequate, especially for growing animals. MEm estimated by different feeding systems (AFRC, CNCPS, CSIRO, INRA, NRC) were compared by using dairy cattle data. The comparison showed that these systems differ in the approaches used to estimate MEm and for its quantification. The CSIRO system estimated the highest MEm, mostly because it includes a correction factor to increase ME as the feeding level increases. Relative to CSIRO estimates, those of NRC, INRA, CNCPS, and AFRC were on average 0.92, 0.86, 0.84, and 0.78, respectively. MEm is affected by the previous nutritional history of the animals. This phenomenon is best predicted by dynamic models, of which several have been published in the last decades. They are based either on energy flows or on nutrient flows. Some of the different approaches used were described and discussed.
Resumo:
Genomewide marker information can improve the reliability of breeding value predictions for young selection candidates in genomic selection. However, the cost of genotyping limits its use to elite animals, and how such selective genotyping affects predictive ability of genomic selection models is an open question. We performed a simulation study to evaluate the quality of breeding value predictions for selection candidates based on different selective genotyping strategies in a population undergoing selection. The genome consisted of 10 chromosomes of 100 cM each. After 5,000 generations of random mating with a population size of 100 (50 males and 50 females), generation G(0) (reference population) was produced via a full factorial mating between the 50 males and 50 females from generation 5,000. Different levels of selection intensities (animals with the largest yield deviation value) in G(0) or random sampling (no selection) were used to produce offspring of G(0) generation (G(1)). Five genotyping strategies were used to choose 500 animals in G(0) to be genotyped: 1) Random: randomly selected animals, 2) Top: animals with largest yield deviation values, 3) Bottom: animals with lowest yield deviations values, 4) Extreme: animals with the 250 largest and the 250 lowest yield deviations values, and 5) Less Related: less genetically related animals. The number of individuals in G(0) and G(1) was fixed at 2,500 each, and different levels of heritability were considered (0.10, 0.25, and 0.50). Additionally, all 5 selective genotyping strategies (Random, Top, Bottom, Extreme, and Less Related) were applied to an indicator trait in generation G(0), and the results were evaluated for the target trait in generation G(1), with the genetic correlation between the 2 traits set to 0.50. The 5 genotyping strategies applied to individuals in G(0) (reference population) were compared in terms of their ability to predict the genetic values of the animals in G(1) (selection candidates). Lower correlations between genomic-based estimates of breeding values (GEBV) and true breeding values (TBV) were obtained when using the Bottom strategy. For Random, Extreme, and Less Related strategies, the correlation between GEBV and TBV became slightly larger as selection intensity decreased and was largest when no selection occurred. These 3 strategies were better than the Top approach. In addition, the Extreme, Random, and Less Related strategies had smaller predictive mean squared errors (PMSE) followed by the Top and Bottom methods. Overall, the Extreme genotyping strategy led to the best predictive ability of breeding values, indicating that animals with extreme yield deviations values in a reference population are the most informative when training genomic selection models.
Resumo:
Background: The objective was to present a new ovarian response prediction index (ORPI), which was based on anti-Mullerian hormone (AMH) levels, antral follicle count (AFC) and age, and to verify whether it could be a reliable predictor of the ovarian stimulation response.Methods: A total of 101 patients enrolled in the ICSI programme were included. The ORPI values were calculated by multiplying the AMH level (ng/ml) by the number of antral follicles (2-9 mm), and the result was divided by the age (years) of the patient (ORPI=(AMH x AFC)/Patient age).Results: The regression analysis demonstrated significant (P<0.0001) positive correlations between the ORPI and the total number of oocytes and of MII oocytes collected. The logistic regression revealed that the ORPI values were significantly associated with the likelihood of pregnancy (odds ratio (OR): 1.86; P=0.006) and collecting greater than or equal to 4 oocytes (OR: 49.25; P<0.0001), greater than or equal to 4 MII oocytes (OR: 6.26; P<0.0001) and greater than or equal to 15 oocytes (OR: 6.10; P<0.0001). Regarding the probability of collecting greater than or equal to 4 oocytes according to the ORPI value, the ROC curve showed an area under the curve (AUC) of 0.91 and an efficacy of 88% at a cut-off of 0.2. In relation to the probability of collecting greater than or equal to 4 MII oocytes according to the ORPI value, the ROC curve had an AUC of 0.84 and an efficacy of 81% at a cut-off of 0.3. The ROC curve for the probability of collecting greater than or equal to 15 oocytes resulted in an AUC of 0.89 and an efficacy of 82% at a cut-off of 0.9. Finally, regarding the probability of pregnancy occurrence according to the ORPI value, the ROC curve showed an AUC of 0.74 and an efficacy of 62% at a cut-off of 0.3.Conclusions: The ORPI exhibited an excellent ability to predict a low ovarian response and a good ability to predict a collection of greater than or equal to 4 MII oocytes, an excessive ovarian response and the occurrence of pregnancy in infertile women. The ORPI might be used to improve the cost-benefit ratio of ovarian stimulation regimens by guiding the selection of medications and by modulating the doses and regimens according to the actual needs of the patients.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)