3 resultados para cooperative level crossings
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Infrared-to-visible frequency upconversion through cooperative energy-transfer and thermal effects in Tb3+/Yb3+-codoped tellurite glasses excited at 1.064 mum is investigated. Bright luminescence emission around 485, 550, 590, 625 and 65 nm, identified as due to the D-5(4) --> F-7(J) (J= 6, 5, 4, 3, and 2) transitions of the terbium ions, respectively, was recorded. The excitation of the D-5(4) emitting level of the Tb3+ ions is assigned to cooperative energy-transfer from pairs of ytterbium ions.. The effect of temperature on the upconversion process was examined and the results revealed a fourfold upconversion enhancement in the 300-500 K interval. The enhancement of the upconversion process is due to the temperature dependence of the Yb3+-sensitizer absorption cross-section under anti-Stokes excitation. A rate-equation. model using multiphonon-assisted absorption for the ytterbium excitation combined with the energy migration effect between Yb-Yb pair, and Tb3+ ground-state depopulation via multiphonon excitation of the F-7(J) excited states describes quite well the experimental results. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Most of architectures proposed for developing Distributed Virtual Environment (DVE) allow limited number of users. To support the development of applications using the internet infrastructure, with hundred or, perhaps, thousands users logged simultaneously on DVE, several techniques for managing resources, such as bandwidth and capability of processing, must be implemented. The strategy presented in this paper combines methods to attain the scalability required, In special the multicast protocol at application level.
Resumo:
Based on the literature data from HT-29 cell monolayers, we develop a model for its growth, analogous to an epidemic model, mixing local and global interactions. First, we propose and solve a deterministic equation for the progress of these colonies. Thus, we add a stochastic (local) interaction and simulate the evolution of an Eden-like aggregate by using dynamical Monte Carlo methods. The growth curves of both deterministic and stochastic models are in excellent agreement with the experimental observations. The waiting times distributions, generated via our stochastic model, allowed us to analyze the role of mesoscopic events. We obtain log-normal distributions in the initial stages of the growth and Gaussians at long times. We interpret these outcomes in the light of cellular division events: in the early stages, the phenomena are dependent each other in a multiplicative geometric-based process, and they are independent at long times. We conclude that the main ingredients for a good minimalist model of tumor growth, at mesoscopic level, are intrinsic cooperative mechanisms and competitive search for space. © 2013 Elsevier Ltd.