336 resultados para convective strom
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Convective storm rainfall is of special importance to urban hydrological studies due to its temporal and spatial variability. Although dense networks of recording rain gauges can be employed to characterize such rainfall, very few investigations of this type have been undertaken due to their prohibitive cost. This paper reports some data on characteristics of tropical convective storms obtained from radar at Bauru in the State of São Paulo, Brazil. Periods of convective precipitation were identified by exclusion of those related to frontal activity with the help of synoptic maps and the radar screen record. The occurrence and evolution of convective storms were observed in two 28 km × 28 km windows obtaining information on the life history of convective cells and the magnitude of rainfall. Frequency distributions of the time of occurrence of convective rainfall, cell size, area covered, life duration and maximum and average rainfall observed in the experimental areas are presented and discussed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Degradation kinetics of food constituents may be related to the matrix molecular mobility by glass transition temperature. Our objective was to test this approach to describe ascorbic acid degradation during drying of persimmons in an automatically controlled tray dryer with temperatures (40 to 70 degrees C) and air velocities (0.8 to 2.0 m/s) varying according a second order central composite design. The Williams-Landel-Ferry model was satisfactorily adjusted to degradation curves for both control strategies adopted-constant air temperature and temperature fixed inside the fruit. Degradation rates were higher at higher drying temperatures, independent of the necessary time to attain the desired moisture content.
Resumo:
A case study of convective development in the Southwest Amazon region during the Wet Season Atmospheric Mesoscale Campaign (WETAMC) and Tropical Rainfall Measuring Mission (TRMM)/Large-Scale Biosphere-Atmosphere (LBA) Experiment in Amazonia is presented. The convective development during 7 February 1999 is shown to occur during a period of very weak large-scale forcing in the presence of topography and deforestation. The available data include dual Doppler radar analysis, radiosonde launches, and surface and boundary layer observations. The observational analysis is complemented with a series of model simulations using the RAMS with 2-km resolution over a 300 km 300 km area forced by a morning radiosonde profile. A comparison of the observed and simulated thermodynamic transformation of the boundary layer and of the formation of convective lines, and of their kinematic and microphysical properties is presented. It is shown that only a few very deep and intense convective cells are necessary to explain the overall precipitating line formation and that discrete propagation and coupling with upper atmosphere circulations may explain the appearance of several lines. The numerical simulation indicates that topography may be the cause of initial convective development, although later on the convective line is parallel to the midlevel shear. There are indications that small-scale deforestation may have an effect on increasing rainfall in the wet season when the large-scale forcing is very weak.
Resumo:
Radar and satellite data from the Tropical Rainfall Measuring Mission-Large-Scale Biosphere-Atmosphere (TRMM-LBA) project have been examined to determine causes for convective storm initiation in the southwest Amazon region. The locations and times of storm initiation were based on the National Center for Atmospheric Research (NCAR) S-band dual-polarization Doppler radar (S-Pol). Both the radar and the Geostationary Operational Environmental Satellite-8 (GOES-8) visible data were used to identify cold pools produced by convective precipitation. These data along with high-resolution topographic data were used to determine possible convective storm triggering mechanisms. The terrain elevation varied from 100 to 600 m. Tropical forests cover the area with numerous clear-cut areas used for cattle grazing and farming. This paper presents the results from 5 February 1999. A total of 315 storms were initiated within 130 km of the S-Pol radar. This day was classified as a weak monsoon regime where convection developed in response to the diurnal cycle of solar heating. Scattered shallow cumulus during the morning developed into deep convection by early afternoon. Storm initiation began about 1100 LST and peaked around 1500-1600 LST. The causes of storm initiation were classified into four categories. The most common initiation mechanism was caused by forced lifting by a gust front (GF; 36%). Forcing by terrain (>300 m) without any other triggering mechanism accounted for 21% of the initiations and colliding GFs accounted for 16%. For the remaining 27% a triggering mechanism was not identified. Examination of all days during TRMM-LBA showed that this one detailed study day was representative of many days. A conceptual model of storm initiation and evolution is presented. The results of this study should have implications for other locations when synoptic-scale forcing mechanisms are at a minimum. These results should also have implications for very short-period forecasting techniques in any location where terrain, GFs, and colliding boundaries influence storm evolution.
Resumo:
Transient non-Darcy forced convection on a flat plate embedded in a porous medium is investigated using the Forchheimer-extended Darcy law. A sudden uniform pressure gradient is applied along the flat plate, and at the same time, its wall temperature is suddenly raised to a high temperature. Both the momentum and energy equations are solved by retaining the unsteady terms. An exact velocity solution is obtained and substituted into the energy equation, which then is solved by means of a quasi-similarity transformation. The temperature field can be divided into the one-dimensional transient (downstream) region and the quasi-steady-state (upstream) region. Thus the transient local heat transfer coefficient can be described by connecting the quasi-steady-state solution and the one-dimensional transient solution. The non-Darcy porous inertia works to decrease the velocity level and the time required for reaching the steady-state velocity level. The porous-medium inertia delays covering of the plate by the steady-state thermal boundary layer. © 1990.
Resumo:
This paper describes the main characteristics and advantages of convective heating system for refractory lining, compared with conventional heating systems. In addition the main results obtained are presented with its implementation in CSN Blast Furnace #2 and 3 Runners, in terms of cost and equipment availability, as well as the need for ceramic coating to protect the lining against oxidation, arising from excessive air combustion. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents the basic principles of the evaporative cooling process for human thermal comfort, the principles of operation for the direct evaporative cooling system and the mathematical development of the equations of thermal exchanges, allowing the determination of the effectiveness of saturation. It also presents the results of experimental tests in a direct evaporative cooler that take place in the Air Conditioning Laboratory at the University of Taubate Mechanical Engineering Department, and the experimental results are used to determinate the convective heat transfer co-efficient and to compare with the mathematical model. (c) 2005 Elsevier Ltd and IIR. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)