5 resultados para control switch
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We investigated the mechanisms responsible for increased blood pressure and sympathetic nerve activity (SNA) caused by 2-3 days dehydration (DH) both in vivo and in situ preparations. In euhydrated (EH) rats, systemic application of the AT(1) receptor antagonist Losartan and subsequent pre-collicular transection (to remove the hypothalamus) significantly reduced thoracic (t) SNA. In contrast, in DH rats, Losartan, followed by pre-collicular and pontine transections, failed to reduce tSNA, whereas transection at the medulla-spinal cord junction massively reduced tSNA. In DH but not EH rats, selective inhibition of the commissural nucleus tractus solitarii (cNTS) significantly reduced tSNA. Comparable data were obtained in both in situ and in vivo (anaesthetized/conscious) rats and suggest that following chronic dehydration, the control of tSNA transfers from supra-brainstem structures (e. g. hypothalamus) to the medulla oblongata, particularly the cNTS. As microarray analysis revealed up-regulation of AP1 transcription factor JunD in the dehydrated cNTS, we tested the hypothesis that AP1 transcription factor activity is responsible for dehydration-induced functional plasticity. When AP1 activity was blocked in the cNTS using a viral vector expressing a dominant negative FosB, cNTS inactivation was ineffective. However, tSNA was decreased after pre-collicular transection, a response similar to that seen in EHrats. Thus, the dehydration-induced switch in control of tSNA from hypothalamus to cNTS seems to be mediated via activation of AP1 transcription factors in the cNTS. If AP1 activity is blocked in the cNTS during dehydration, sympathetic activity control reverts back to forebrain regions. This unique reciprocating neural structure-switching plasticity between brain centres emphasizes the multiple mechanisms available for the adaptive response to dehydration.
Resumo:
The authors present an offline switching power supply with multiple isolated outputs and unity power factor with the use of only one power processing stage, based on the DC-DC SEPIC (single ended primary inductance converter) modulated by variable hysteresis current control. The principle of operation, the theoretical analysis, the design procedure, an example, and simulation results are presented. A laboratory prototype, rated at 160 W, operating at a maximum switching frequency of 100 kHz, with isolated outputs rated at +5 V/15 A -5 V/1 A, +12 V/6 A and -12 V/1 A, has been built given an input power factor near unity.
Resumo:
We develop a general model for adaptive c, np, u and p control charts in which one, two or three design parameters (sample size, sampling interval and control limit width) switch between two values, according to the most recent process information. For a given in-control average sampling rate and a given false alarm rate, the adaptive chart detects changes in the process much faster than a chart with fixed parameters. Moreover, this study also offers general guidance on how to choose an effective design.