13 resultados para contractile function
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
There is still controversy about the relation between changes in myocardial contractile function and global left ventricular (LV) performance during stable concentric hypertrophy. To clarify this, we analyzed LV function in vivo and myocardial mechanics in vitro in rats with pressure overload-induced cardiac hypertrophy. Male Wistar rats (70 g) Underwent ascending aortic stenosis for 8 weeks (group AAS, n = 9). LV performance wits assessed by transthoracic echocardiography Under anesthesia. Myocardial function Was studied in isolated papillary muscle preparations during isometric contraction. The data were compared with age- and sex-matched sham-operated rats (group C, 11 = 9). LV weight-to-body weight ratio (C: 2.13 +/- 0.14 mg/g; AAS: 3.24 +/- 0.44) LV relative wall thickness (C: 0.18 +/- 0.02; AAS: 0.33 +/- 0.09), and LV fractional shortening (C: 54 +/- 5%; AAS: 70 +/- 8%) were increased in group AAS (P<0.05). Echocardio-graphic analysis also indicated a significant association (r = 0.74 P<0.001) between the percent fractional shortening index and LV relative wall thickness. The performance of AAS isolated In muscle revealed that active tension (C: 6.6 +/- 1.7 g/mm(2); AAS: 6.5 +/- 1.5 g/mm(2)) and maximum rate of tension development (C: 69 +/- 21 g/mm(2)/s AAS: 69 +/- 18 g/mm(2)/s) were not significantly different Front group C (P>0.05). In conclusion, compensated pressure-overload myocardial hypertrophy is associated with preserved myocardial function and increased ventricular performance. The improved LV function might be due to the ventricular remodeling, characterized by an increased relative wall thickness.
Resumo:
There still controversy about the relation between changes in myocardial contractile function and global left ventricular (LV) performance during stable concentric hypertrophy. To clarify this, we analyzed LV function in vivo and myocardial mechanics in vitro in rats with pressure overload-induced cardiac hypertrophy. Male Wistar rats (70 g) underwent ascending aorta stenosis for 8 weeks (group AAS, n=9). LV performance was assessed by transthoracic echocardiography under light anesthesia. Myocardial function was studied in isolated papillary muscle preparation during isometric contraction. The data were compared with age- and sex-matched sham-operated rats (group C, n=9). LV weight-to-body weight ratio (C: 2.0 ± 0.5 mg/g; AAS: 3.3 ± 0.7 mg/g), LV relative wall thickness (C: 0.19 ± 0.02; AAS; 0.34 ± 0.10), and LV fractional shortening (C: 54 ± 5%; AAS: 70 ± 8%) were increased in the group AAS (p<0.05). Echocardiographic analysis also indicated a significant association (r=0.74; p<0.001) between percent fractional shortening and LV relative wall thickness. The performance of AAS isolated muscle revealed that active tension (C: 6.6 ± 1.7 g/mm 2; AAS: 6.5 ± 1.5 g/mm 2) and maximum rate of tension development (C: 69 ± 21 g/mm 2/s; AAS: 69 ± 18 g/mm 2) were not significantly different from group C (p>0.05). In conclusion: 1) Compensated pressure-overload myocardial hypertrophy is associated with preserved myocardial function and increased ventricular performance; 2) The improved LV function might be due to the ventricular remodeling characterized by an increased relative wall thickness. Copyright © 2002 By PJD Publications Limited.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective: To examine the basis for local wall motion abnormalities commonly seen in patients with ischemic heart disease, computer-controlled isolated muscle studies were carried out. Methods: Force patterns of physiologically sequenced contractions (PSCs) from rat left ventricular muscle preparations under well-oxygenated conditions and during periods of hypoxia and reoxygenation were recorded and stored in a computer. Force patterns of hypoxic-reoxygenating and oxygenated myocardium were applied to oxygenated and hypoxic-reoxygenating myocardium, respectively. Results: Observed patterns of shortening and lengthening closely resemble those obtained from ischemic and non-ischemic myocardial segments using ultrasonic crystals in intact dog hearts during coronary occlusion and reperfusion, and are similar to findings reported in angiographic studies of humans with coronary artery disease. Conclusion: The current study, demonstrating motions of oxygenated isolated muscle preparations which are similar to those in perfused segments of intact hearts with regional ischemia, supports the concept that the multiple motions of both ischemic and non-ischemic segments seen in regional myocardial disease can be explained by interactions of strongly and weakly contracting muscle during the physiologic cardiac cycle.
Resumo:
Purpose - To investigate the participation of contractile state and relaxation in cardiac muscle dysfunction during the transition from stable hypertrophy to cardiac decompensation in aging spontaneously hypertensive rats (SHR). Methods - isolated left ventricular papillary muscle function was studied in SHR with heart failure (SHR-F), in age-matched SHR without evidence of heart failure (SHR-NF), and in nonhypertensive controls Wistar-Kyoto rats (WKY). Muscles were analised in isometric and isotonic contractions in Krebs-Henseleit solution with calcium concentration of 1.25mM at 28°C. Results - Papillary muscles from SHR-F and SHR-NF demonstrated decreased active tension development and shortening velocity relative to normotensive WKY (p<0.05). SHR-F and SHR-NF did not differ. Compared with SHR-NF and WKY, muscle passive stiffness was increased in the failing SHR (p<0.05 versus WKY and SHR-NF). This parameter did not differ between SHR-NF and WKY (p> 0.05). Conclusion - These data suggest that the progression from stable hypertrophy to heart failure is associated with changes in the passive stiffness and is not related to depression of myocardial contractile function.
Resumo:
Pós-graduação em Anestesiologia - FMB
Resumo:
Introduction: Aortic insufficiency (AoI), a volume overload, is characterized by the diastolic reflux of blood from the regurgitating aorta to the left ventricle. This effect results from malfunctioning aortic cusps. The main cause of AoI in developing countries is rheumatic fever, including Brazil, and valvar degeneration in developed countries. There is a strong association between cardiovascular diseases and depression. Selective serotonin reuptake inhibitors (SSRI) are one of the most prescribed antidepressants in the world. Previous studies of our laboratory showed that the utilization of a SSRI, paroxetine, improved cardiac function in rats with sub-chronic AoI and reduced the daily ingestion of hypertonic sodium (NaCl 0,3M). Cardiovascular diseases can determine behavior changes like increase of anxiety, and it is yet unknown if AoI would determine anxiety or anhedonia, incapacity of obtaining pleasure through physical or sensorial experiences. A possible target for SSRI action could be a change in the expression of enzyme isoforms that collaborate in the contractile function of the heart muscle, like the heavy chains of myosine, the sarcoplasmatic reticulum Ca2+/ATPase (SERCA) and its regulator protein, phospholamban (PLB). Objectives: Evaluation of behavior parameters for anxiety and anhedonia state and genic expression of a-myosine, b-myosine, SERCA2a and PLB in the heart tissue of rats with subchronic AoI that received treatment with an SSRI (paroxetine) for 4 weeks. Methods: Surgery to induce AoI was performed on male Wistar rats, anxiety was evaluated by the elevated plus-maze (EPM) and state of anhedonia was tested by ingestion of 2% sucrose solution. After euthanasia the heart tissue was collected and total RNA was extracted to be analyzed by the RT-qPCR method. Results: Heart fractional shortening was preserved in rats with AoI that were treated compared to rats with AoI that were not treated. There was no statistically ...
Resumo:
In this study, we evaluated the involvement of rat ventral prostate smooth muscle cells (SMC) in secretory activity and whether this function is modulated after castration. Cell morphology was examined at both light and electron microscopy levels and the organelles involved in secretory function were labeled by the zinc-iodide-osmium (ZIO) method at the ultrastructural level and their volume density was determined by stereology. Castration resulted in marked changes of the SMC, which adopted a spinous aspect and abandoned the layered arrangement observed in the prostates of non-castrated rats. The volume density of ZIO reactive organelles increased progressively after castration, reaching significantly higher levels 21 days after castration, Since previous studies have demonstrated that SMC express SMC markers (even 21 days after castration) and are able to respond to adrenergic stimulation, we concluded that differentiated SMC are able to shift from a predominantly contractile to a more synthetic phenotype without changing their differentiation status. (c) 2005 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.
Resumo:
The aging spontaneously hypertensive rat (SHR) is a model in which the transition from chronic stable left ventricular hypertrophy to overt heart failure can be observed. Although the mechanisms for impaired function in hypertrophied and failing cardiac muscle from the SHR have been studied, none accounts fully for the myocardial contractile abnormalities. The cardiac cytoskeleton has been implicated as a possible cause for myocardial dysfunction. If an increase in microtubules contributes to dysfunction, then myocardial microtubule disruption by colchicine should promote an improvement in cardiac performance. We studied the active and passive properties of isolated left ventricular papillary muscles from 18- to 24-month-old SHR with evidence of heart failure (SHR-F, n=6), age-matched SHR without heart failure (SHR-NF, n=6), and age-matched normotensive Wistar-Kyoto rats (WKY, n=5). Mechanical parameters were analyzed before and up to 90 minutes after the addition of colchicine (10(-5), 10(-4), and 10(-3) mol/L). In the baseline state, active tension (AT) developed by papillary muscles from the WKY group was greater than for SHR-NF and SHR-F groups (WKY 5.69+/-1.47 g/mm(2) [mean+/-SD], SHR-NF 3.41+/-1.05, SHR-F 2.87+/-0.26; SHR-NF and SHR-F P<0.05 versus WKY rats). The passive stiffness was greater in SHR-F than in the WKY and SHR-NF groups (central segment exponential stiffness constant, K-cs: SHR-F 70+/-25, SHR-NF 44+/-17, WKY 41+/-13 [mean+/-SD]; SHR-F P<0.05 versus; SHR-NF and WKY rats). AT did not improve after 10, 20, and 30 minutes of exposure to colchicine (10(-5), 10(-4), and 10(-3) mol/L) in any group. In the SHR-F group, AT and passive stiffness did not change after 30 to 90 minutes of colchicine exposure (10(-4) mol/L). In summary, the data in this study fail to demonstrate improvement of intrinsic muscle function in SHR with heart failure after colchicine. Thus, in the SHR there is no evidence that colchicine-induced cardiac microtubular depolymerization affects the active or passive properties of hypertrophied or failing left ventricular myocardium.
Resumo:
The muscles can perform the same function in a specific segment (muscles of fast and slow contraction), and at the same time be antagonistic in relation to muscular action (flexors or extensors). The present research aimed to study the morphology, frequency and metabolism of fiber types and the contractile characteristics of extensor and flexors muscles of rabbit. We studied muscles anterior tibialis (AT), flexor digitorum supeficialis (FDS), extensor digitorum longus (EDL) and posterior tibialis (PT). The muscles were submitted to the techniques HE, NADH-TR and myofibrillar ATPase. In EDL and PT extensor muscles, the frequencies of red (SO + FOG) and white fibers (FG) were 68.77% and 31.23% versus 58.87% and 41.13%, respectively. In the AT and FDS flexor muscles, these frequencies were 75.14% and 24.86% versus 73.89% and 26.11%, respectively. In extensor muscles, the percentage of slow contraction fibers was 8.05% in EDL and 9.74% in PT, and in fast contraction, 91.95% in EDL and 90.26% in PT. In flexors, the slow contraction frequencies were 12.35% in AT and 8.17% in FDS, and in fast contraction, 87.65% and 91.83%, respectively. Skeletal muscles with antagonistic muscular actions (flexors and extensors) the morphological, contractile and metabolic characteristics are identical.
Resumo:
We have investigated the effects of L-arginine, D-arginine and L-lysine on airway smooth muscle responsiveness to spasmogens in vitro. Both L-arginine and D-arginine (100 mM) significantly reduced the contractile potency and maximal contractile response to histamine but not to methacholine or potassium chloride in guinea-pig epithelium-denuded isolated trachea. Similarly, the contractile response to histamine was significantly reduced by L-arginine (100 mM) in rabbit epithelium-denuded isolated bronchus. The amino acid L-lysine (100 mM) failed to significantly alter the contractile potency of histamine in guinea-pig isolated trachea (P>0.05). In guinea-pig isolated trachea precontracted with histamine, both L-arginine and D-arginine produced a concentration-dependent relaxation which was not significantly altered by epithelium removal or by the presence of the nitric oxide synthase inhibitor, NG-nitro L-arginine methyl ester (L-NAME; 50 µM). Thus, at very high concentrations, arginine exhibit a non-competitive antagonism of histamine-induced contraction of isolated airway preparations that was independent of the generation of nitric oxide and was not dependent on charge. These observations confirm previous studies of cutaneous permeability responses and of contractile responses of guinea-pig isolated ileal smooth muscle. Taken together, the data suggest that high concentrations of arginine can exert an anti-histamine effect.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aging spontaneously hypertensive rat (SHR) is a model in which the transition from chronic stable left ventricular hypertrophy to overt heart failure can be observed. Although the mechanisms for impaired function in hypertrophied and failing cardiac muscle from the SHR have been studied, none accounts fully for the myocardial contractile abnormalities. The cardiac cytoskeleton has been implicated as a possible cause for myocardial dysfunction. If an increase in microtubules contributes to dysfunction, then myocardial microtubule disruption by colchicine should promote an improvement in cardiac performance. We studied the active and passive properties of isolated left ventricular papillary muscles from 18- to 24-month-old SHR with evidence of heart failure (SHR-F, n=6), age-matched SHR without heart failure (SHR-NF, n=6), and age-matched normotensive Wistar-Kyoto rats (WKY, n=5). Mechanical parameters were analyzed before and up to 90 minutes after the addition of colchicine (10(-5), 10(-4), and 10(-3) mol/L). In the baseline state, active tension (AT) developed by papillary muscles from the WKY group was greater than for SHR-NF and SHR-F groups (WKY 5.69+/-1.47 g/mm2 [mean+/-SD], SHR-NF 3.41+/-1.05, SHR-F 2.87+/-0.26; SHR-NF and SHR-F P<0.05 versus WKY rats). The passive stiffness was greater in SHR-F than in the WKY and SHR-NF groups (central segment exponential stiffness constant, Kcs: SHR-F 70+/-25, SHR-NF 44+/-17, WKY 41+/-13 [mean+/-SD]; SHR-F P<0.05 versus SHR-NF and WKY rats). AT did not improve after 10, 20, and 30 minutes of exposure to colchicine (10(-5), 10(-4), and 10(-3) mol/L) in any group. In the SHR-F group, AT and passive stiffness did not change after 30 to 90 minutes of colchicine exposure (10(-4) mol/L). In summary, the data in this study fail to demonstrate improvement of intrinsic muscle function in SHR with heart failure after colchicine. Thus, in the SHR there is no evidence that colchicine-induced cardiac microtubular depolymerization affects the active or passive properties of hypertrophied or failing left ventricular myocardium.