30 resultados para computational cost
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The scheme is based on Ami Harten's ideas (Harten, 1994), the main tools coming from wavelet theory, in the framework of multiresolution analysis for cell averages. But instead of evolving cell averages on the finest uniform level, we propose to evolve just the cell averages on the grid determined by the significant wavelet coefficients. Typically, there are few cells in each time step, big cells on smooth regions, and smaller ones close to irregularities of the solution. For the numerical flux, we use a simple uniform central finite difference scheme, adapted to the size of each cell. If any of the required neighboring cell averages is not present, it is interpolated from coarser scales. But we switch to ENO scheme in the finest part of the grids. To show the feasibility and efficiency of the method, it is applied to a system arising in polymer-flooding of an oil reservoir. In terms of CPU time and memory requirements, it outperforms Harten's multiresolution algorithm.The proposed method applies to systems of conservation laws in 1Dpartial derivative(t)u(x, t) + partial derivative(x)f(u(x, t)) = 0, u(x, t) is an element of R-m. (1)In the spirit of finite volume methods, we shall consider the explicit schemeupsilon(mu)(n+1) = upsilon(mu)(n) - Deltat/hmu ((f) over bar (mu) - (f) over bar (mu)-) = [Dupsilon(n)](mu), (2)where mu is a point of an irregular grid Gamma, mu(-) is the left neighbor of A in Gamma, upsilon(mu)(n) approximate to 1/mu-mu(-) integral(mu-)(mu) u(x, t(n))dx are approximated cell averages of the solution, (f) over bar (mu) = (f) over bar (mu)(upsilon(n)) are the numerical fluxes, and D is the numerical evolution operator of the scheme.According to the definition of (f) over bar (mu), several schemes of this type have been proposed and successfully applied (LeVeque, 1990). Godunov, Lax-Wendroff, and ENO are some of the popular names. Godunov scheme resolves well the shocks, but accuracy (of first order) is poor in smooth regions. Lax-Wendroff is of second order, but produces dangerous oscillations close to shocks. ENO schemes are good alternatives, with high order and without serious oscillations. But the price is high computational cost.Ami Harten proposed in (Harten, 1994) a simple strategy to save expensive ENO flux calculations. The basic tools come from multiresolution analysis for cell averages on uniform grids, and the principle is that wavelet coefficients can be used for the characterization of local smoothness.. Typically, only few wavelet coefficients are significant. At the finest level, they indicate discontinuity points, where ENO numerical fluxes are computed exactly. Elsewhere, cheaper fluxes can be safely used, or just interpolated from coarser scales. Different applications of this principle have been explored by several authors, see for example (G-Muller and Muller, 1998).Our scheme also uses Ami Harten's ideas. But instead of evolving the cell averages on the finest uniform level, we propose to evolve the cell averages on sparse grids associated with the significant wavelet coefficients. This means that the total number of cells is small, with big cells in smooth regions and smaller ones close to irregularities. This task requires improved new tools, which are described next.
Resumo:
Two methods to evaluate the state transition matrix are implemented and analyzed to verify the computational cost and the accuracy of both methods. This evaluation represents one of the highest computational costs on the artificial satellite orbit determination task. The first method is an approximation of the Keplerian motion, providing an analytical solution which is then calculated numerically by solving Kepler's equation. The second one is a local numerical approximation that includes the effect of J(2). The analysis is performed comparing these two methods with a reference generated by a numerical integrator. For small intervals of time (1 to 10s) and when one needs more accuracy, it is recommended to use the second method, since the CPU time does not excessively overload the computer during the orbit determination procedure. For larger intervals of time and when one expects more stability on the calculation, it is recommended to use the first method.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This article introduces an efficient method to generate structural models for medium-sized silicon clusters. Geometrical information obtained from previous investigations of small clusters is initially sorted and then introduced into our predictor algorithm in order to generate structural models for large clusters. The method predicts geometries whose binding energies are close (95%) to the corresponding value for the ground-state with very low computational cost. These predictions can be used as a very good initial guess for any global optimization algorithm. As a test case, information from clusters up to 14 atoms was used to predict good models for silicon clusters up to 20 atoms. We believe that the new algorithm may enhance the performance of most optimization methods whenever some previous information is available. (C) 2003 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An approach using straight lines as features to solve the photogrammetric space resection problem is presented. An explicit mathematical model relating straight lines, in both object and image space, is used. Based on this model, Kalman Filtering is applied to solve the space resection problem. The recursive property of the filter is used in an iterative process which uses the sequentially estimated camera location parameters to feedback to the feature extraction process in the image. This feedback process leads to a gradual reduction of the image space for feature searching, and consequently eliminates the bottleneck due to the high computational cost of the image segmentation phase. It also enables feature extraction and the determination of feature correspondence in image and object space in an automatic way, i.e., without operator interference. Results obtained from simulated and real data show that highly accurate space resection parameters are obtained as well as a progressive processing time reduction. The obtained accuracy, the automatic correspondence process, and the short related processing time show that the proposed approach can be used in many real-time machine vision systems, making possible the implementation of applications not feasible until now.
Resumo:
Traditional pattern recognition techniques can not handle the classification of large datasets with both efficiency and effectiveness. In this context, the Optimum-Path Forest (OPF) classifier was recently introduced, trying to achieve high recognition rates and low computational cost. Although OPF was much faster than Support Vector Machines for training, it was slightly slower for classification. In this paper, we present the Efficient OPF (EOPF), which is an enhanced and faster version of the traditional OPF, and validate it for the automatic recognition of white matter and gray matter in magnetic resonance images of the human brain. © 2010 IEEE.
Resumo:
In this paper we propose a fast and an accurate method for fault diagnosis in power transformers by means of Optimum-Path Forest (OPF) classifier. Since we applied Dissolved Gas Analysis (DGA), the samples have been labeled by IEEE/IEC standard, which was further analyzed by OPF and several other well known supervised pattern recognition techniques. The experiments have showed that OPF can achieve high recognition rates with low computational cost. © 2012 IEEE.
Resumo:
An important tool for the heart disease diagnosis is the analysis of electrocardiogram (ECG) signals, since the non-invasive nature and simplicity of the ECG exam. According to the application, ECG data analysis consists of steps such as preprocessing, segmentation, feature extraction and classification aiming to detect cardiac arrhythmias (i.e.; cardiac rhythm abnormalities). Aiming to made a fast and accurate cardiac arrhythmia signal classification process, we apply and analyze a recent and robust supervised graph-based pattern recognition technique, the optimum-path forest (OPF) classifier. To the best of our knowledge, it is the first time that OPF classifier is used to the ECG heartbeat signal classification task. We then compare the performance (in terms of training and testing time, accuracy, specificity, and sensitivity) of the OPF classifier to the ones of other three well-known expert system classifiers, i.e.; support vector machine (SVM), Bayesian and multilayer artificial neural network (MLP), using features extracted from six main approaches considered in literature for ECG arrhythmia analysis. In our experiments, we use the MIT-BIH Arrhythmia Database and the evaluation protocol recommended by The Association for the Advancement of Medical Instrumentation. A discussion on the obtained results shows that OPF classifier presents a robust performance, i.e.; there is no need for parameter setup, as well as a high accuracy at an extremely low computational cost. Moreover, in average, the OPF classifier yielded greater performance than the MLP and SVM classifiers in terms of classification time and accuracy, and to produce quite similar performance to the Bayesian classifier, showing to be a promising technique for ECG signal analysis. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS