31 resultados para composite film
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The continuous technological advances require materials with properties that conventional material cannot display. Material property combinations are being the focus to the development of composite materials, which are considered a multiphase material that exhibits properties of the constituent phases. One interesting material to be studied as sensing material is the composite made of ferroelectric ceramic and polymeric matrix as a two-phases composite material. In that case, the combinations properties intended are the high piezo and pyroelectric activities of the dense ceramic with the impact resistance, flexibility, formability and low densities of the polymer. Using the piezoelectric property of the composite film, it can be used to detect acoustic emission (AE), which is a transient elastic wave generated by sudden deformation in materials under stress. AE can be applied for evaluating the health of structures in a nondestructive way and without any lapse of time. The preliminary result indicates that the composite Pz34/PEEK can be used as sensing material for nondestructive evaluation. ©2009 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Composites made of calcium modified lead titanate ceramic powder and poly (ether-ether-ketone) high performance polymer matrix were prepared in the film form using a hot press. The acoustic and electromechanical properties of the composites have been determined using the ultrasonic immersion technique and piezoelectric spectroscopy, respectively. The composite film with 60 - 40 vol.% PTCa/PEEK was tested as acoustic emission detector. Preliminary results shown that the piezo composite can be used as sensor to evaluate the behavior of materials.
Resumo:
Composite films made of lead zirconate titanate ceramic particles coated with polyaniline and poly(vinylidene fluoride) - PZT-PAni/PVDF were produced by hot pressing the powder mixtures in the desired ceramic volume fraction. The ceramic particles were coated during the polyaniline synthesis and the conductivity of the conductor polymer was controlled by different degrees of protonation. Composites were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), ac and dc electrical measurements, the longitudinal d33 piezo coefficient and the photopyroelectric response. Results showed that the presence of PAni increased the dielectric permittivity of the composite and allowed better efficiency in the poling process, which increased the piezo- and pyroelectric activities of the composite film and reduced both the poling time and the poling electric field. The thermal sensing of the material was also analyzed, showing that this composite can be used as pyroelectric sensor. © 2013 IOP Publishing Ltd.
Resumo:
Structural health monitoring (SHM) refers to the procedure of assessing the structure conditions continuously so it is an alternative to conventional nondestructive evaluation (NDE) techniques [1]. With the growing developments in sensor technology acoustic emission (AE) technology has been attracting attention in SHM applications. AE are characterized by waves produced by the sudden internal stress redistribution caused by the changes in the internal structure, such as fatigue, crack growth, corrosion, etc. Piezoelectric materials such as Lead Zirconate Titanate (PZT) ceramic have been widely used as sensor due to its high electromechanical coupling factor and piezoelectric d coefficients. Because of the poor mechanical characteristic and the lack in the formability of the ceramic, polymer matrix-based piezoelectric composites have been studied in the last decade in order to obtain better properties in comparison with a single phase material. In this study a composite film made of polyurethane (PU) and PZT ceramic particles partially recovered with polyaniline (PAni) was characterized and used as sensor for AE detection. Preliminary results indicate that the presence of a semiconductor polymer (PAni) recovering the ceramic particles, make the poling process easier and less time consuming. Also, it is possible to observe that there is a great potential to use such type of composite as sensor for structure health monitoring.
Resumo:
This work deals with a red phosphor. Y3BO6:Eu3+, and its corresponding poly(N-vinylpyrrolidone) (PVP)/Y3BO6:Eu3+ luminescent composite film suitable for applications in the next generation of Hg-free lamps based on near ultraviolet (UV) light emitting diodes (LEDs). Well crystallized samples of Y3BO6 powders with the Eu3+ content up to 20 mol% were prepared by the Pechini method. After structural, morphological and optical characterization, the best doping rate of Eu3+ in the matrix was determined to be 15 mol%. This optimal powder, which is highly friable, was easily ground into fine particles and homogeneously dispersed into a PVP polymer solution to give rise to a polymer phosphor composite. Structural and optical features of the composite film have been studied and compared to those of a pristine PVP film and Y3BO6:Eu3+ powder. All the characterization (XRD, SAXS, luminescence...) proved that the red phosphor particles are well incorporated into the polymer composite film which exhibited the characteristic red emission of Eu3+ under UV light excitation. Furthermore, photostability of the polymer/phosphor composite film under UV-LED irradiation was evaluated from exposure to accelerated artificial photoageing at wavelengths above 300 nm.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work describes the preparation and characterization of composite materials obtained by the combination of natural rubber (NR) and carbon black (CB) in different percentages, aiming to improve their mechanical properties, processability, and electrical conductivity, aiming future applications as transducer in pressure sensors. The composites NR/CB were characterized through optical microscopy (OM), DC conductivity, thermal analysis using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMA), thermogravimetry (TGA), and stress-strain test. The electrical conductivity varied between 10(-9) and 10 S m(-1), depending on the percentage of CB in the composite. Furthermore, a linear (and reversible) dependence of the conductivity on the applied pressure between 0 and 1.6 MPa was observed for the sample with containing 80 wt % of NR and 20% of CB. (C) 2007 Wiley Periodicals, Inc.
Resumo:
In this paper we report a study of the physicochemical, dielectric and piezoelectric properties of anionic collagen and collagen-hydroxyapatite (HA) composites, considering the development of new biomaterials which have potential applications in support for cellular growth and in systems for bone regeneration. The piezoelectric strain tensor element d(14), the elastic constant s(55) and the dielectric permittivity 8(11), were measured for the anionic collagen and collagen-HA films. The thermal analysis shows that the denaturation endotherm is at 59.47 degreesC for the collagen sample. The collagen-HA composite film shows two transitions, at 48.9 and 80.65 degreesC. The X-ray diffraction pattern of the collagen film shows a broad band characteristic of an amorphous material. The main peaks associated to the crystalline HA is present in the sample of collagen-HA. In the collagen-HA composite, one can also notice the presence of other peaks with low intensities which is an indication of the formation of other crystalline phases of apatite. The scanning electron photomicrograph of anionic collagen membranes shows very thin bundles of collagen. The scanning electron photomicrography of collagen-HA film also show deposits of hydroxyapatite on the collagen fibers forming larger bundles and suggesting that a collagenous structure of reconstituted collagen fibers could act as nucleators for the formation of apatite crystal similar to those of bone. The piezoelectric strain tensor element d(14) was measured for the anionic collagen, with a value of 0.062 pC N-1, which is in good agreement compared with values reported in the literature obtained with other techniques. For the collagen-HA composite membranes, a slight decrease of the value of the piezoelectricity (0.041 pC N-1) was observed. The anionic collagen membranes present the highest density, dielectric permittivity and lowest frequency constant f.L. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
The peptide NS5A-1 (PPLLESWKDPDYVPPWHG), derived from hepatitis C virus (HCV) NS5A protein, was immobilized into layer-by-layer (LbL) silk fibroin (SF) films. Deposition was monitored by UV-vis absorption measurements at each bilayer deposited. The interaction SF/peptide film induced secondary structure in NS5A-1 as indicated by fluorescence and circular dichroism (CD) measurements. Voltammetric sensor (SF/NS5A-1) properties were observed when the composite film was tested in the presence of anti-HCV. The peptide-silk fibroin interaction studied here showed new architectures for immunosensors based on antigenic peptides and SF as a suitable immobilization matrix. © 2013 American Chemical Society.