119 resultados para comportamento no solo
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O reaproveitamento de nutrientes após a fermentação de resíduos orgânicos em biodigestor, associado à técnica do cultivo hidropônico, é uma alternativa para reduzir custos na agricultura, além de contribuir no menor consumo das reservas naturais de nutrientes do planeta. Com esse enfoque, estudou-se o comportamento da cultura do meloeiro usando a técnica hidropônica e efluente de biodigestor proveniente da fermentação anaeróbica de estrume bovino. Cultivou-se o meloeiro (Cucumis melo L. 'Bônus 2') em condições de ambiente protegido. O delineamento estatístico utilizado foi de blocos casualizados, com 4 tratamentos (cultivo hidropônico em sistema fechado tipo NFT com uso de solução nutritiva organo-mineral; cultivo hidropônico em sistema fechado tipo NFT com uso de solução nutritiva 100% mineral; cultivo em sistema aberto, com substrato e solução nutritiva organo-mineral e cultivo em sistema aberto, com substrato e solução nutritiva 100% mineral) e 6 repetições. Foram realizadas avaliações quanto a altura de plantas aos 50; 56; 63; 70 e 77 dias após a semeadura; tempo de colheita; peso de frutos e produtividade. As melhores respostas foram observadas no cultivo hidropônico em sistema fechado tipo NFT com uso de solução nutritiva 100% mineral. A substituição parcial de adubos minerais por biofertilizante, se mostrou viável para os tratamentos em sistema aberto (com substrato), constituindo-se em masi uma alternativa aos horticultores.
Resumo:
An experiment was carried out in greenhouse during the period January to April 2010, at Center of Agricultural Sciences of the Federal University of Paraiba, in Areia, Paraiba State, Brazil, in order to evaluate the effects of saline water and bovine biofertilizer on the seedling growth of Indian neem. The substrate was material of a non-saline soil collected in depth of 0-20 cm. The treatments were arranged in a completely randomized design using a 5 x 2 factorial, referring to salinity levels of irrigation water of 0.5, 1.0, 2.0, 3.0 and 4.0 dS m(-1), with and without bovine biofertilizer applied to the soil only once after dilution with water (1: 1), a day before sowing, in volume corresponding to 10% of the substrate. At 86 days after emergence of seedlings the plant growth in height and principal root length, diameter of stem and root, leaf number and dry mass of roots and shoots of plants were evaluated. The salinity of irrigation water increased the salinity levels in the substrate inhibiting the growth in height, stem diameter, leaf emission by plants, diameter and length of principal root and the dry matter production of roots and aerial parts (leaves + stem) of neem, but with less pronounced decrease in plants under the treatments with bovine biofertilizer.
Resumo:
The present study had as its objective the assessment of the possible effects of hydric stress on the growth, physiological characteristics of two different genetic materials from Eucalyptus urograndis. The experiment was carried out in a greenhouse at Faculdade de Ciências Agronômicas of UNESP, campus Botucatu from March to July, 2005. The hydric management was established based on the soil water potential. Two water levels were established, doing the evapotranspired water replacement by pot weighing. Two clones were used, Eucalyptus urograndis 105 and 433, being the first one more resistant to the hydric deficit and the 433 more sensitive to stress. The study was made from a 2×2 factorial (two levels of water × two genetic materials). For the hydric management, the plants were irrigated when they reached a soil water potential of -0.03 MPa or -1.5 MPa. The assessments made were: diffusive water vapor of stomato, transpiration, leaf temperature and leaf water potential. The physiological evaluations throughout the day, in the end of the experiment. Treatments without hydric stress had a higher performance in all studied characteristics, but the clones had no influence. The stomatic resistance followed the potentials, showing higher values in the treatments submitted to hydric deficiency, more intensely for clone 433, being that this also happened with the leaf water potential. The transpiration also followed the leaf water potential and the stomatic resistance more intensely for clone 105 both comparing stressed plants and non-stressed plants. Consequently, the leaf temperatures had higher values for clone 433 on the stressed treatment. Thus, it can be concluded that there was a better performance in plants kept on a soil water potential of -0.03 MPa and a higher resistance to hydric stress for clone 105.
Comportamento contrátil de barreiras selantes de solo estabilizado para base de lagoas de tratamento
Resumo:
Liners were proposed as subsoil contamination protection devices for waste disposal sites. In the rural environment, they can be used to construct pond bottoms for liquid waste treatment, but the construction needs to be quick and cheap. A good technical solution for these situations is the use of local soil compacted with low quantities of cement or lime, obtaining good properties for this purpose. These barriers need special care about their contraction behavior which may compromise its use. This work shows the results of contraction tests in sandy soil specimens and others stabilized with lime and with cement. Soil structure changes during cure time were checked using electronic scan microscopy. Results show maximum soil contraction of 0.648% for specimen with 14 days cure process. After twenty eight days of cure the contraction values were lower than 0.5%, which classifies the material as of low contraction. Electronic scan image shows significant material structure alteration up to seven days cure. Results show that studied mixtures had appropriate contraction behavior for liner usage.
Resumo:
Salt excess in soil and water used for irrigation can cause significant loss of production and growth in cultivated plants. Among some options for reduction of negative effects of salts to plants in cultivated areas, fermented bio fertilizer has been used to grow vegetables and fruit tree irrigated with saline water. The study aimed at evaluating the behavior of the noni plant to salinity of the irrigation water in substrate with and with no bio fertilizer. Treatments were arranged in a randomized block design with four replications, using a 5 × 2 factorial arrangement. Five levels of electrical conductivity of irrigation water (0.5, 1.5, 3.0, 4.5, 6.0 dS m-1) were used in substrates with and with no bio fertilizer. Parameters were evaluated as follows: plant height, stem diameter, number of leaves, leaf area, shoot dry matter and water consumption. All evaluated variables were negatively affected by the increase in salt concentration of the irrigation water, but always with less intense effects in treatments with bio fertilizer.The bio fertilizer does not eliminate, but mitigates the negative effects of salts in noni plants.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)