31 resultados para collective agreement
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this study was to evaluate the intraexaminer agreement in the detection of the mandibular canal roof (MCR) and mental foramen (MF) in panoramic radiographs. Forty panoramic radiographs of edentulous patients were used. Two calibrated examiners (A and B) read the images 2 times, for both sides independently, under blind conditions. The interval between the readings was 10 days. The intraexaminer agreement in the interpretation of MCR and MF was performed by kappa statistics with linear weighting (x). The intraexaminer agreement for the detection of MCR, in the left side, was good for both examiners (A: kappa = 0.67; B: kappa = 0.71). Related to the right side, it was found to be kappa = 0.47 and kappa = 0.62, respectively to A and B. The intraexaminer agreement for the detection of MF was good for both examiners interpreting the left side (A: kappa = 0.61; B: kappa = 0.63), and in relation to the right side, it was moderate (A: kappa = 0.51) and fair (B: kappa = 0.38). The intraexaminer agreement in the detection of MCR was good and from good to fair in the detection of MF.
Resumo:
Statistical analysis of data is crucial in cephalometric investigations. There are certainly excellent examples of good statistical practice in the field, but some articles published worldwide have carried out inappropriate analyses. Objective: The purpose of this study was to show that when the double records of each patient are traced on the same occasion, a control chart for differences between readings needs to be drawn, and limits of agreement and coefficients of repeatability must be calculated. Material and methods: Data from a well-known paper in Orthodontics were used for showing common statistical practices in cephalometric investigations and for proposing a new technique of analysis. Results: A scatter plot of the two radiograph readings and the two model readings with the respective regression lines are shown. Also, a control chart for the mean of the differences between radiograph readings was obtained and a coefficient of repeatability was calculated. Conclusions: A standard error assuming that mean differences are zero, which is referred to in Orthodontics and Facial Orthopedics as the Dahlberg error, can be calculated only for estimating precision if accuracy is already proven. When double readings are collected, limits of agreement and coefficients of repeatability must be calculated. A graph with differences of readings should be presented and outliers discussed.
Resumo:
The stability of a Bose-Einstein condensed state of trapped ultra-cold atoms is investigated under the assumption of an attractive two-body and a repulsive three-body interaction. The Ginzburg-Pitaevskii-Gross (GPG) nonlinear Schrodinger equation is extended to include an effective potential dependent on the square of the density and solved numerically for the s-wave. The lowest collective mode excitations are determined and their dependences on the number of atoms and on the strength of the three-body force are studied. The addition of three-body dynamics can allow the number of condensed atoms to increase considerably, even when the strength of the three-body force is very small compared with the strength of the two-body force. We study in detail the first-order liquid-gas phase transition for the condensed state, which can happen in a critical range of the effective three-body force parameter.
Resumo:
Using a collective potential derived previously on the basis of the generator coordinate method with Skyrme interactions, we obtain values for the compression modulus of Ca-40 which are in good agreement with a recently obtained experimental value. Calculated values for the compression modulus for O-16 are also given. The procedure involved in the derivation of the collective potential is briefly reviewed and discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We introduce a quasianalytic nonlinear Schrodinger equation with beyond mean-field corrections to describe the dynamics of a zero-temperature dilute superfluid Fermi gas in the crossover from the weak-coupling Bardeen-Cooper-Schrieffer (BCS) regime, where k(F)parallel to a parallel to << 1 with a the s-wave scattering length and k(F) the Fermi momentum, through the unitarity limit k(F)a ->+/-infinity to the Bose-Einstein condensation (BEC) regime where k(F)a > 0. The energy of our model is parametrized using the known asymptotic behavior in the BCS, BEC, and the unitarity limits and is in excellent agreement with accurate Green's-function Monte Carlo calculations. The model generates good results for frequencies of collective breathing oscillations of a trapped Fermi superfluid.
Resumo:
We investigate a dilute mixture of bosons and spin-polarized fermions in one dimension. With an attractive Bose-Fermi scattering length the ground state is a self-bound droplet, i.e., a Bose-Fermi bright soliton where the Bose and Fermi clouds are superimposed. We find that the quantum fluctuations stabilize the Bose-Fermi soliton such that the one-dimensional bright soliton exists for any finite attractive Bose-Fermi scattering length. We study density profile and collective excitations of the atomic bright soliton showing that they depend on the bosonic regime involved: mean-field or Tonks-Girardeau.
Resumo:
This paper presents some findings regarding the interaction between different computer interfaces and different types of collective work. We want to claim that design in online learning environments has a paramount role in the type of collaboration that happens among participants. In this paper, we report on data that illustrate how teachers can collaborate online in order to learn how to use geometry software in teaching activities. A virtual environment which allows that construction to be carried out collectively, even if the participants are not sharing a classroom, is the setting for the research presented in this paper.
Resumo:
INTRODUCTION: Visual analysis is widely used to interpret regional cerebral blood flow (rCBF) SPECT images in clinical practice despite its limitations. Automated methods are employed to investigate between-group rCBF differences in research Studies but have rarely been explored in individual analyses.OBJECTIVES: To compare visual inspection by nuclear physicians with the automated statistical parametric mapping program using a SPECT dataset of patients with neurological disorders and normal control images.METHODS: Using statistical parametric mapping, 14 SPECT images from patients with various neurological disorders were compared individually with a databank of 32 normal images using a statistical threshold of p<0.05 (corrected for multiple comparisons at the level of individual voxels or clusters). Statistical parametric mapping results were compared with Visual analyses by a nuclear physician highly experienced in neurology (A) as well as a nuclear physician with a general background of experience (B) who independently classified images as normal or altered, and determined the location of changes and the severity.RESULTS: of the 32 images of the normal databank, 4 generated maps showing rCBF abnormalities (p<0.05, corrected). Among the 14 images from patients with neurological disorders, 13 showed rCBF alterations. Statistical parametric mapping and physician A completely agreed on 84.37% and 64.28% of cases from the normal databank and neurological disorders, respectively. The agreement between statistical parametric mapping and ratings of physician B were lower (71.18% and 35.71%, respectively).CONCLUSION: Statistical parametric mapping replicated the findings described by the more experienced nuclear physician. This finding suggests that automated methods for individually analyzing rCBF SPECT images may be a valuable resource to complement visual inspection in clinical practice.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)