3 resultados para cloud service pricing
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
In this paper, a novel methodology to price the reactive power support ancillary service of Distributed Generators (DGs) with primary energy source uncertainty is shown. The proposed methodology provides the service pricing based on the Loss of Opportunity Costs (LOC) calculation. An algorithm is proposed to reduce the uncertainty present in these generators using Multiobjective Power Flows (MOPFs) implemented in multiple probabilistic scenarios through Monte Carlo Simulations (MCS), and modeling the time series associated with the generation of active power from DGs through Markov Chains (MC). © 2011 IEEE.
Resumo:
The increase of higher education offer is a basic need of developed and emerging countries. It requires increasing and ongoing investments. The offer of higher education, by means of Distance Learning, based on the Internet, is one of the most efficient manners for the massification of this offer, as it allows ample coverage and lower costs. In this scenario, we highlight Moodle, an open and low-cost environment for Distance Learning. Its utilization may be amplified through the adoption of an emerging Information and Communication Technology (ICT), Cloud Computing, which allows the virtualization of Moodle sites, cutting costs, facilitating management and increasing its service capacity. This article diffuses a public tool, opened and free, for automatic conversion of Moodle sites, such that these may be hosted on Azure: the Cloud Computing environment of Microsoft.
Resumo:
Distributed Generation, microgrid technologies, two-way communication systems, and demand response programs are issues that are being studied in recent years within the concept of smart grids. At some level of enough penetration, the Distributed Generators (DGs) can provide benefits for sub-transmission and transmission systems through the so-called ancillary services. This work is focused on the ancillary service of reactive power support provided by DGs, specifically Wind Turbine Generators (WTGs), with high level of impact on transmission systems. The main objective of this work is to propose an optimization methodology to price this service by determining the costs in which a DG incurs when it loses sales opportunity of active power, i.e, by determining the Loss of Opportunity Costs (LOC). LOC occur when more reactive power is required than available, and the active power generation has to be reduced in order to increase the reactive power capacity. In the optimization process, three objectives are considered: active power generation costs of DGs, voltage stability margin of the system, and losses in the lines of the network. Uncertainties of WTGs are reduced solving multi-objective optimal power flows in multiple probabilistic scenarios constructed by Monte Carlo simulations, and modeling the time series associated with the active power generation of each WTG via Fuzzy Logic and Markov Chains. The proposed methodology was tested using the IEEE 14 bus test system with two WTGs installed. © 2011 IEEE.