93 resultados para chloroplast DNA sequence

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A substantial fraction of the eukaryotic genome consists of repetitive DNA sequences that include satellites, minisatellites, microsatellites, and transposable elements. Although extensively studied for the past three decades, the molecular forces that generate, propagate and maintain repetitive DNAs in the genomes are still discussed. To further understand the dynamics and the mechanisms of evolution of repetitive DNAs in vertebrate genome, we searched for repetitive sequences in the genome of the fish species Hoplias malabaricus. A satellite sequence, named 5SHindIII-DNA, which has a conspicuous similarity with 5S rRNA genes and spacers was identified. FISH experiments showed that the 5S rRNA bona fide gene repeats were clustered in the interstitial position of two chromosome pairs of H. malabaricus, while the satellite 5SHindIII-DNA sequences were clustered in the centromeric position in nine chromosome pairs of the species. The presence of the 5SHindIII-DNA sequences in the centromeres of several chromosomes indicates that this satellite family probably escaped from the selective pressure that maintains the structure and organization of the 5S rDNA repeats and become disperse into the genome. Although it is not feasible to explain how this sequence has been maintained in the centromeric regions, it is possible to hypothesize that it may be involved in some structural or functional role of the centromere organization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the cloning and characterization of a long interspersed nucleotide element (LINE) fi-om a cichlid fish, Oreochromis niloticus, and show the distribution of this element, called CiLINE2 for cichlid LINE2, in the chromosomes of this species. The identification of an open reading frame in CiLINE2 with amino acid sequence similarity to reverse transcriptases encoded by LINE-like elements in Caenorhabditis elegans, Platemys spixii, Schistosoma mansoni, Gallus gallus (CRI), Drosophila melanogaster (I factor), and Homo sapiens (LINE2), as well as the structure of the element, suggest it is a member of this family of non-long terminal repeat-containing retrotransposons. Search of a DNA sequence database identified sequences similar to CiLINE2 in four other fish species (Haplotaxodon microlepis, Oreochromis mossambicus, Pseudotropheus zebra, and Fugu rubripes). Southern blot hybridization experiments revealed the presence of sequences similar to CiLINE2 in all Tilapiini species analyzed from the genera Oreochromis, Tilapia, and Sarotherodon, and gave an estimated copy number of about 5500 for the haploid genome of O. niloticus. Fluorescent in situ hybridization showed that CiLINE2 sequences were organized in small clusters dispersed over all chromosomes of O. niloticus, with a higher concentration near chromosome ends. Furthermore the long arm of chromosome 1 was strikingly enriched with this sequence. The distribution of LINE2-related elements might underlie the difference in chromosome banding patterns observed between cold-blooded vertebrates and mammals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sixty-five accessions of the species-rich freshwater red algal order Batrachospermales were characterized through DNA sequencing of two regions: the mitochondrial cox1 gene (664 bp), which is proposed as the DNA barcode for red algae, and the UPA (universal plastid amplicon) marker (370 bp), which has been recently identified as a universally amplifying region of the plastid genome. upgma phenograms of both markers were consistent in their species-level relationships, although levels of sequence divergence were very different. Intraspecific variation of morphologically identified accessions for the cox1 gene ranged from 0 to 67 bp (divergences were highest for the two taxa with the greatest number of accessions; Batrachospermum helminthosum and Batrachospermum macrosporum); while in contrast, the more conserved universal plastid amplicon exhibited much lower intraspecific variation (generally 0-3 bp). Comparisons to previously published mitochondrial cox2-3 spacer sequences for B. helminthosum indicated that the cox1 gene and cox2-3 spacer were characterized by similar levels of sequence divergence, and phylogeographic patterns based on these two markers were consistent. The two taxa represented by the largest numbers of specimens (B. helminthosum and B. macrosporum) have cox1 intraspecific divergence values that are substantially higher than previously reported, but no morphological differences can be discerned at this time among the intraspecific groups revealed in the analyses. DNA barcode data, which are based on a short fragment of an organellar genome, need to be interpreted in conjunction with other taxonomic characters, and additional batrachospermalean taxa need to be analyzed in detail to be able to draw generalities regarding intraspecific variation in this order. Nevertheless, these analyses reveal a number of batrachospermalean taxa worthy of more detailed DNA barcode study, and it is predicted that such research will have a substantial effect on the taxonomy of species within the Batrachospermales in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. The emergence of multi- and extensively-drug resistant Mycobacterium tuberculosis strains has created an urgent need for new agents to treat tuberculosis (TB). The enzymes of shikimate pathway are attractive targets to the development of antitubercular agents because it is essential for M. tuberculosis and is absent from humans. Chorismate synthase (CS) is the seventh enzyme of this route and catalyzes the NADH- and FMN-dependent synthesis of chorismate, a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Although the M. tuberculosis Rv2540c (aroF) sequence has been annotated to encode a chorismate synthase, there has been no report on its correct assignment and functional characterization of its protein product. Results. In the present work, we describe DNA amplification of aroF-encoded CS from M. tuberculosis (MtCS), molecular cloning, protein expression, and purification to homogeneity. N-terminal amino acid sequencing, mass spectrometry and gel filtration chromatography were employed to determine identity, subunit molecular weight and oligomeric state in solution of homogeneous recombinant MtCS. The bifunctionality of MtCS was determined by measurements of both chorismate synthase and NADH:FMN oxidoreductase activities. The flavin reductase activity was characterized, showing the existence of a complex between FMN ox and MtCS. FMNox and NADH equilibrium binding was measured. Primary deuterium, solvent and multiple kinetic isotope effects are described and suggest distinct steps for hydride and proton transfers, with the former being more rate-limiting. Conclusion. This is the first report showing that a bacterial CS is bifunctional. Primary deuterium kinetic isotope effects show that C4-proS hydrogen is being transferred during the reduction of FMNox by NADH and that hydride transfer contributes significantly to the rate-limiting step of FMN reduction reaction. Solvent kinetic isotope effects and proton inventory results indicate that proton transfer from solvent partially limits the rate of FMN reduction and that a single proton transfer gives rise to the observed solvent isotope effect. Multiple isotope effects suggest a stepwise mechanism for the reduction of FMNox. The results on enzyme kinetics described here provide evidence for the mode of action of MtCS and should thus pave the way for the rational design of antitubercular agents. © 2008 Ely et al; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molossidae species, Cynomops abrasus (2n = 34, fundamental number, FN = 64), Eumops auripendulus (2n = 42, FN = 62), Molossus rufus (2n = 48, FN = 64), Molossops temminckii (2n = 48, FN = 64), and Nyctinomops laticaudatus (2n = 48, FN = 64), and Phyllostomidae species, Phyllostomus discolor (2n = 32, FN = 60), have karyotypes with different chromosome and fundamental numbers, different localization of constitutive heterochromatin, and different numbers and location of nucleolar organizer regions (NORs). Fluorescence in situ hybridization with a human probe of the telomeric sequence (TTAGGG)n produced fluorescent signals in telomeric regions of the six bat species' chromosomes; in E. auripendulus, pericentromeric signals were also observed in the acrocentric and subtelocentric chromosomes. A relationship between telomeric sequences and NORs, and between telomeric sequences and constitutive heterochromatin was detected in chromosomes bearing NORs in C. abrasus, M. temminckii, N. laticaudatus, and P. discolor. No interstitial signal was observed in the meta- or submetacentric chromosomes of these species. ©FUNPEC-RP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Biotecnologia - IQ

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A satellite DNA sequence of Parodon hilarii ( named pPh2004) was isolated, cloned and sequenced. This satellite DNA is composed of 200 bp, 60% AT rich. In situ hybridization ( FISH) results revealed that the satellite DNA pPh2004 is located in the terminal regions of several chromosomes, forming highly evident blocks in some and punctual marks in others. The comparison between the FISH and C-banding results showed that the location of this satellite DNA coincides with that of most terminal heterochromatins. However, some regions are only marked by FISH whereas other regions are only marked by C-banding. The possible existence of more than one satellite DNA family could explain these partial differences. The in situ hybridization with the satellite DNA and the G- and C-bandings confirmed the presence of a sex chromosome system of the ZZ/ZW type in P. hilarii, as well as the correct identification of the Z chromosome in the karyotype. This chromosome displays a segment of terminal heterochromatin in the long arm, similar to the segment observed in the short arm of the W chromosome, also showing a G- banding pattern similar to that of the short arm and part of the long arm of the W chromosome. A hypothesis on the origin of the W chromosome from an ancestral chromosome similar to the Z chromosome is presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Neotropical bat genus Chiroderma consists of five recognized species. This study uses DNA-sequence variation of the mitochondrial cytochrome b gene to infer the phylogenetic relationships within Chiroderma. Phylogenetic relationships deduced from these data by parsimony analyses resulted in the discovery of a single most-parsimonious tree with C. salvini diverging basal to the other four species of Chiroderma and sister-group relationships of C. villosum with C. improvisum and C. trinitatum with C. doriae. This is a relatively young group of species with approximate times of divergence ranging from 1.6 million years before present (mya) for the divergence of C. doriae from C. trinitatum to 4.6 mya for the divergence of C. salvini from the other four species of Chiroderma.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, we report the cloning and nucleotide sequence of PCR-generated 5S rDNA from the Tilapiine cichlid fish, Oreochromis niloticus. Two types of 5S rDNA were detected that differed by insertions and/or deletions and base substitutions within the non-transcribed spacer (NTS). Two 5S rDNA loci were observed by fluorescent in situ hybridization (FISH) in metaphase spreads of tilapia chromosomes. FISH using an 18S rDNA probe and silver nitrate sequential staining of 5S-FISH slides showed three 18S rDNA loci that are not syntenic to the 5S rDNA loci.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Randomly amplified polymorphic DNA (RAPD) analysis of 35 Paracoccidioides brasiliensis isolates was carried out to evaluate the correlation of RAPD profiles with the virulence degree or the type of the clinical manifestations of human paracoccidioidomycosis. The dendrogram presented two main groups sharing 64% genetic similarity. Group A included two isolates from patients with chronic paracoccidioidomycosis; group B comprised the following isolates showing 65% similarity: two non-virulent, six attenuated, five virulent, eight from patients with chronic paracoccidioidomycosis and two from patients with acute paracoccidioidomycosis. The virulent Pb18 isolate and six attenuated or non-virulent samples derived from it were genetically indistinguishable (100% of similarity). Thus, in our study, RAPD patterns could not discriminate among 35 P. brasiliensis isolates according to their differences either in the degree of virulence or in the type of the clinical manifestation of this fungal infection. © 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.