11 resultados para chemosensitivity

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The locus coeruleus (LC) has been suggested as a CO2 chemoreceptor site in mammals. This nucleus is a mesencephalic structure of the amphibian brain and is probably homologous to the LC in mammals. There are no data available for the role of LC in the central chemoreception of amphibians. Thus the present study was designed to investigate whether LC of toads (Bufo schneideri) is a CO2/H+ chemoreceptor site. Fos immunoreactivity was used to verify whether the nucleus is activated by hypercarbia (5% CO2 in air). In addition, we assessed the role of noradrenergic LC neurons on respiratory and cardiovascular responses to hypercarbia by using 6-hydroxydopamine lesion. To further explore the role of LC in central chemosensitivity, we examined the effects of microinjection of solutions with different pH values (7.2, 7.4, 7.6, 7.8, and 8.0) into the nucleus. Our main findings were that 1) a marked increase in c-fos-positive cells in the LC was induced after 3 h of breathing a hypercarbic gas mixture; 2) chemical lesions in the LC attenuated the increase of the ventilatory response to hypercarbia but did not affect ventilation under resting conditions; and 3) microinjection with acid solutions (pH = 7.2, 7.4, and 7.6) into the LC elicited an increased ventilation, indicating that the LC of toads participates in the central chemoreception.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neonatal maternal separation (NMS) is a form of stress that interferes with the regulation of the stress response, an effect that predisposes to the emergence of panic and anxiety related disorders. We previously showed that at adulthood, awake female (but not male) rats subjected to NMS show a hypercapnic ventilatory response (HCVR; 5% CO(2)) that is 63% greater than controls (Genest et al., 2007). To understand the mechanisms underlying the sex-specific effects of NMS on the ventilatory response to CO(2), we used two different anesthetized female rat preparations to assess central CO(2) chemosensitivity and contribution of sensory afferents (stretch receptors and peripheral chemoreceptors) that influence the HCVR. Data show that anesthesia eliminated the respiratory phenotype observed previously in awake females and CO(2) chemosensitivity did not differ between groups. Finally, the assessment of the ovarian hormone levels across the oestrus cycle failed to reveal significant differences between groups. Since anesthesia did not affect the manifestation of NMS-related respiratory dysfunction in males (including the hypercapnic ventilatory response) (Kinkead et al., 2005; Dumont and Kinkead, 2010), we propose that the panic or anxiety induced by CO(2) during wakefulness is responsible for enhancement of the HCVR in NMS females. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Locus coeruleus (LC) has been suggested as a CO2 chemoreceptor site in mammals. In the present study, we assessed the role of LC noradrenergic neurons in the cardiorespiratory and thermal responses to hypercapnia. To selectively destroy LC noradrenergic neurons, we administered 6-hydroxydopamine (6-OHDA) bilaterally into the LC of male Wistar rats. Control animals had vehicle (ascorbic acid) injected (sham group) into the LC. Pulmonary ventilation (plethysmograph), mean arterial pressure (MAP), heart rate (HR), and body core temperature (T-c, data loggers) were measured followed by 60 min of hypercapnic exposure (7% CO2 in air). To verify the correct placement and effectiveness of the chemical lesions, tyrosine hydroxylase immunoreactivity was performed. Hypercapnia caused an increase in pulmonary ventilation in all groups, which resulted from increases in respiratory frequency and tidal volume (V-T) in sham-operated and 6-OHDA-lesioned groups. The hypercapnic ventilatory response was significantly decreased in 6-OHDA-lesioned rats compared with sham group. This difference was due to a decreased V-T in 6-OHDA rats. LC chemical lesion or hypercapnia did not affect MAP, HR, and T-c. Thus, we conclude that LC noradrenergic neurons modulate hypercapnic ventilatory response but play no role in cardiovascular and thermal regulation under resting conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: Central chemoreceptors are important to detect changes of CO2/H+, and the Locus coeruleus (LC) is one of the many putative central chemoreceptor sites. Here, we studied the contribution of LC glutamatergic receptors on ventilatory, cardiovascular and thermal responses to hypercapnia. Methods: To this end, we determined pulmonary ventilation (VE), body temperatures (Tb), mean arterial pressure (MAP) and heart rate (HR) of male Wistar rats before and after unilateral microinjection of kynurenic acid (KY, an ionotropic glutamate receptor antagonist, 10 nmol/0.1 μL) or α-methyl-4-carboxyphenylglycine (MCPG, a metabotropic glutamate receptor antagonist, 10 nmol/0.1 μL) into the LC, followed by 60 min of air breathing or hypercapnia exposure (7% CO2). Results: Ventilatory response to hypercapnia was higher in animals treated with KY intra-LC (1918.7 ± 275.4) compared with the control group (1057.8 ± 213.9, P < 0.01). However, the MCPG treatment within the LC had no effect on the hypercapnia-induced hyperpnea. The cardiovascular and thermal controls were not affected by hypercapnia or by the injection of KY and MCPG in the LC. Conclusion: These data suggest that glutamate acting on ionotropic, but not metabotropic, receptors in the LC exerts an inhibitory modulation of hypercapnia-induced hyperpnea. © 2013 Scandinavian Physiological Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In female rats, a single injection of estradiol valerate (EV) results in effects that are similar to those observed in women with polycystic ovary syndrome (PCOS). We hypothesized that EV-induced PCOS affects breathing control based on evidence showing an influence of sex hormones on ventilation. To test this hypothesis, we studied the effects of EV treatment on the ventilation of female rats in air, in 7% CO2 and in 7% O2, at 30, 45 and 60 days after EV injection. The group examined 30 days after EV treatment showed a 61% reduction in the hypercapnic ventilatory response compared to the control group. Basal ventilation, hypoxic ventilatory response, and body temperature were not affected. These results, suggest that the hormonal changes observed in PCOS may result in a temporary inhibition of the central chemoreflex but do not influence basal ventilation or the hypoxic peripheral chemoreflex.