82 resultados para chemical reaction system

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physics of plasmas encompasses basic problems from the universe and has assured us of promises in diverse applications to be implemented in a wider range of scientific and engineering domains, linked to most of the evolved and evolving fundamental problems. Substantial part of this domain could be described by R–D mechanisms involving two or more species (reaction–diffusion mechanisms). These could further account for the simultaneous non-linear effects of heating, diffusion and other related losses. We mention here that in laboratory scale experiments, a suitable combination of these processes is of vital importance and very much decisive to investigate and compute the net behaviour of plasmas under consideration. Plasmas are being used in the revolution of information processing, so we considered in this technical note a simple framework to discuss and pave the way for better formalisms and Informatics, dealing with diverse domains of science and technologies. The challenging and fascinating aspects of plasma physics is that it requires a great deal of insight in formulating the relevant design problems, which in turn require ingenuity and flexibility in choosing a particular set of mathematical (and/or experimental) tools to implement them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work demonstrates, for the first time. a time-resolved electron paramagnetic resonance (EPR) monitoring of a chemical reaction occurring in a polymeric structure. The progress of the coupling of a N-alpha-tert-butyloxycarbonyl-2.2.6.6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (Boc-TOAC) spin probe to a model peptide-resin was followed through EPR spectra. Progressive line broadening of EPR peaks was observed, indicative of an increased population of immobilized spin probe molecules attached to the solid support. The time for spectral stabilization of this process coincided with that determined in a previous Coupling study. thereby validating this in situ quantitative monitoring of the reaction. In addition, the influence of polymer swelling degree and solvent viscosity, as well as of the steric hindrance within beads. on the rate of coupling reaction was also addressed. A deeper evaluation of the latter effect was possible by determining unusual polymer parameters such as the average site-site distance and site-concentration within resin beads in each solvent system. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mechanical activation is one of the most effective method for obtaining highly disperse system due to mechanical action stress fields form in solids during milling procedure. This effect results in changes of free energy, leading to release of heat, formation of a new surface, formation of different crystal lattice defects and initiation of solid-state chemical reaction. The accumulated deformation energy determines irreversible changes of crystal structure and consequently microstructure resulting in the change of their properties. Mechanochemical processing route has been developed recently for the production of intermetallic and alloy compounds. The intrinsic advantage of this process is that the solid-state reaction is activated due to mechanical energy instead of the temperature. It was shown that the chemical reactivity of starting materials could be improved significantly after mechanochemical activation and, subsequently, the calcination temperature was reduced. Besides, it was apparent that the mechanochemical treatment could enhance the reactivity of constituent oxides; however, the sintering process could not be avoided to develop the desired ceramics. A novel mechanochemical technique for synthesis of fine-grained perovskite structured powders has shown that it is possible to form perovskite at room temperature. The effect of milling on the formation of perovskite structure of barium titanate (BT), lead titanate (PT), PZT, PZN, magnesium niobate (PMN) and LM ceramic materials was analyzed. The dielectric properties of sintered ceramics are comparable with those prepared by other methods in the literature. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of nucleosides and deoxynucleosides, generating ribose 1-phosphate and the purine base, which is an important step of purine catabolism pathway. The lack of such an activity in humans, owing to a genetic disorder, causes T-cell impairment, and thus drugs that inhibit human PNP activity have the potential of being utilized as modulators of the immunological system to treat leukemia, autoimmune diseases, and rejection in organ transplantation. Besides, the purine salvage pathway is the only possible way for apicomplexan parasites to obtain the building blocks for RNA and DNA synthesis, which makes PNP from these parasites an attractive target for drug development against diseases such as malaria. Hence, a number of research groups have made efforts to elucidate the mechanism of action of PNP based on structural and kinetic studies. It is conceivable that the mechanism may be different for PNPs from diverse sources, and influenced by the oligomeric state of the enzyme in solution. Furthermore, distinct transition state structures can make possible the rational design of specific inhibitors for human and apicomplexan enzymes. Here, we review the current status of these research efforts to elucidate the mechanism of PNP-catalyzed chemical reaction, focusing on the mammalian and Plamodium falciparum enzymes, targets for drug development against, respectively, T-Cell and Apicomplexan parasites-mediated diseases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present paper describes the one-pot procedure for the formation of self-assembled thin films of two silanes on the model oxidized silicon wafer, SiO2/Si. SiO2/Si is a model system for other surfaces, such as glass, quartz, aerosol, and silica gel. MALDI-TOF MS with and without a matrix, XPS, and AFM have confirmed the formation of self-assembled thin films of both 3-imidazolylpropyltrimethoxysilane (3-IPTS) and 4-(N- propyltriethoxysilane-imino)pyridine (4-PTSIP) on the SiO2/Si surface after 30 min. Longer adsorption times lead to the deposition of nonreacted 3-IPTS precursors and the formation of agglomerates on the 3-IPTS monolayer. The formation of 4-PTSIP self-assembled layers on SiO2/Si is also demonstrated. The present results for the flat SiO2/Si surface can lead to a better understanding of the formation of a stationary phase for affinity chromatography as well as transition-metal-supported catalysts on silica and their relationship with surface roughness and ordering. The 3-IPTS and 4-PTSIP modified SiO2/Si wafers can also be envisaged as possible built-on-silicon thin-layer chromatography (TLC) extraction devices for metal determination or N-heterocycle analytes, such as histidine and histamine, with on-spot MALDI-TOF MS detection. © 2005 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The tuberculostatic drug rifampicin has been described as a scavenger of reactive species. Additionally, the recent demonstration that oral therapy with a complex of rifampicin and horseradish peroxidase (HRP) was more effective than rifampicin alone, in an animal model of experimental leprosy, suggested the importance of redox reactions involving rifampicin and their relevance to the mechanism of action. Hence, we studied the oxidation of rifampicin catalyzed by HRP, since this enzyme may represent the prototype of peroxidation-mediated reactions. We found that the antibiotic is efficiently oxidized and that rifampicin-quinone is the product, in a reaction dependent on both HRP and hydrogen peroxide. The steady-state kinetic constants Km app (101±23 mmol/l), Vmax app (0.78±0.09 μmol/l·s-1) and kcat (5.1±0.6 s-1) were measured (n=4). The reaction rate was increased by the addition of co-substrates such as tetramethylbenzidine, salicylic acid, 5-aminosalicylic acid and paracetamol. This effect was explained by invoking an electron-transfer mechanism by which these drugs acted as mediators of rifampicin oxidation. We suggested that this drug interaction might be important at the inflammatory site. © 2005 Pharmaceutical Society of Japan.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Melatonin is an endoleamine that has anti-inflammatory, immunomodulating and antioxidants properties. But there is a contradiction between the antioxidant effects of melatonin and glutathione (GSH). Therefore, the main objective of this work was to study the effect of melatonin on the oxidation of GSH and the effect of GSH on the oxidation of melatonin by peroxyl radicals generated by thermolysis of 2,2 -Azobis(2- amino-propane)-dihydrochloride (AAPH). The influence of the reaction conditions and the identity of the products of oxidation were also studied. The main products obtained during the oxidation of melatonin were its monohydroxylated derivative and N1-acetyl- N2-formyl-5-methoxykynuramine (AFMK), which is the product obtained by oxidative cleavage of the melatonin indole ring. By studying the buffer type, pH and the presence or absence of dissolved oxygen in the reaction system, it was observed that, the yield of AFMK was higher when the pH or the concentration of oxygen was increased. Comparing the reactivity of both molecules GSH and melatonin, it can be seen that intermediates radicals generated during the oxidation of melatonin are able to oxidize GSH itself. We propose that this chemical property could justify the recent reports that demonstrated the inability of melatonin to inhibit the oxidation of GSH in cells

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work intends to know the most types of ignition systems, studying its history, the way it works, applications and some examples. The assembly of a distributor less ignition system is also required. All vehicles powered by internal combustion engines need an ignition system that allows this engine to ignite the air-fuel mixture using its ignition system in the best possible manner. The main goal of an ignition system is to obtain a spark having enough energy to start the chemical reaction of the oxygen and the fuel. It took a study dealing with the various types of ignition systems since their creation at the beginning of the last century until 2015. The work starts studying the high tension magneto ignition system and later together with the low tension ignition system, going on with the conventional ignition system and finally accomplishing with the various types of electronic ignition systems. It was studied and implemented an electronic circuit to power a double spark ignition system also known as wasted spark ignition system. This circuit was assembled with an electric pulse generator and powered mechanically by a dc electric motor of the variable rpm type

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O processo de modificação molecular denominado latenciação é revisto, apresentando formas avançadas no transporte de fármacos, utilizando macromoléculas como transportadores e sistemas de liberação sítio-específica como: CDS (Chemical Delivery System), ADEPT (Antibody-Directed Enzyme Prodrug Therapy), GDEPT/VDEPT (Gene-Directed Enzyme Prodrug Therapy/Vírus-Directed Enzyme Prodrug Therapy), ODDS (Osteotropic Drug Delivery System), PDEPT (Polymer-Directed Enzyme Prodrug Therapy), PELT (Polymer-Enzyme Liposome Therapy) e LEAPT (Lectin-Directed Enzyme-Activated Prodrug Therapy).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays the real contribution of light on the acceleration of the chemical reaction for the dental bleaching is under incredulity, mostly because the real mechanisms of its contribution still are obscure. Objectives: Determine the influence of pigment of three colored bleaching gels in the light distribution and absorption in the teeth, to accomplish that, we have used in this experiment bovine teeth and three colored bleaching gels. It is well Known that the dark molecules absorb light and increase the local temperature upraising the bleaching rate, these molecules are located in the interface between the enamel and dentin. Methods: This study was realized using an argon laser with 455nm with 150mW of intensity and a LED with the same characteristics, three colored gels (green, blue and red) and to realize the capture of the digital images it was used a CCD camera connected to a PC. The images were processed in a mathematical environment (MATHLAB, R12 (R)). Results: The obtained results show that the color of the bleaching gel influences significantly the absorption of light in the specific sites of the teeth. Conclusions: This poor absorption can be one of the major factors involved with the incredulity of the light contribution on the process that can be observed in the literature nowadays.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tuberculosis (TB) poses a major worldwide public health problem. The increasing prevalence of TB, the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis, the causative agent of TB, and the devastating effect of co-infection with HIV have highlighted the urgent need for the development of new antimycobacterial agents. Analysis of the complete genome sequence of M. tuberculosis shows the presence of genes involved in the aromatic amino acid biosynthetic pathway. Experimental evidence that this pathway is essential for M. tuberculosis has been reported. The genes and pathways that are essential for the growth of the microorganisms make them attractive drug targets since inhibiting their function may kill the bacilli. We have previously cloned and expressed in the soluble form the fourth shikimate pathway enzyme of the M. tuberculosis, the aroE-encoded shikimate dehydrogenase (mtSD). Here, we present the purification of active recombinant aroE-encoded M. tuberculosis shikimate dehydrogenase (mtSD) to homogeneity, N-terminal sequencing, mass spectrometry, assessment of the oligomeric state by gel filtration chromatography, determination of apparent steady-state kinetic parameters for both the forward and reverse directions, apparent equilibrium constant, thermal stability, and energy of activation for the enzyme-catalyzed chemical reaction. These results pave the way for structural and kinetic studies, which should aid in the rational design of mtSD inhibitors to be tested as antimycobacterial agents. (c) 2005 Elsevier B.V. All rights reserved.