41 resultados para centripetal placement
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Objective: Control of microleakage represents a challenge for posterior composite restorations. The technique for composite placement may reduce microleakage. The null hypothesis of this in vitro study was that centripetal incremental insertion of composite resin would result in less microleakage than that obtained with the oblique incremental technique or bulk technique. Method and Materials: Standardized Class 2 preparations were made in 60 caries-free extracted third molars and randomly assigned to 3 groups ( n = 20): ( 1) oblique incremental insertion technique ( control), ( 2) centripetal incremental insertion technique, and ( 3) bulk insertion. The teeth were restored with a total-etch adhesive and micro-hybrid composite resin. The specimens were isolated with nail varnish except for a 2-mm-wide area around the restoration and then thermocycled ( 1,000 thermal cycles, 5 degrees C/ 55 degrees C; 30-second dwell time). The specimens were immersed in an aqueous solution of 50% silver nitrate for 24 hours, followed by 8 hours of immersion in a photo-developing solution and subsequently evaluated for leakage. The microleakage scores ( 0 to 4) obtained from the occlusal and cervical walls were analyzed with median nonparametric tests ( P <.05). Results: The null hypothesis was rejected. All techniques attained statistically similar dentin microleakage scores ( P =.15). The centripetal insertion technique displayed significantly less microleakage than the oblique technique at the enamel margins ( P =.04). Conclusion: None of the techniques eliminated marginal microleakage in Class 2 preparations. However, in occlusal areas, the centripetal technique performed significantly better than the other techniques.
Resumo:
Inferior Alveolar Nerve (IAN) transposition is an option for prosthetic rehabilitation in cases of moderate or even severe bone reabsorption for patients that do not tolerate removable dentures. The aim of the present report is to describe an inferior alveolar nerve transposition with involvement of the mental foramen for implant placement. The surgical procedure was performed under local anesthesia, by the inferior alveolar, lingual and buccal nerve blocking technique. Centripetal osteotomy was performed, and bone tissue was removed, leaving the nerve tissue free in the foramen area. After that, transsection of the incisor nerve was performed, and lateral osteotomy was started from the buccal direction, toward the trajectory of the IAN. The procedure was concluded, by making use of a delicate resin spatula to manipulate the vascular-nervous bundle. The drilling sequence for placing the dental implants was performed, and autogenous bone was harvested using a bone collector attached to the surgical suction appliance. After the implants were placed, the bone tissue previously collected during the osteotomies and drilling processes was placed in order to protect the IAN from contact with the implants. The surgical protocol for inferior alveolar nerve transposition, followed by implant placement presented excellent results, with complete recovery of the sensitivity, seven months after the surgical procedure.
Resumo:
This paper presents a pole placement method using both the augmented Jacobian and the corresponding system transfer function matrices. From the manipulation of these matrices a straightforward approach results to get the coefficients of a non-linear system, whose solution gives the parameters of the stabilizers that can provide a pre-specified minimum damping to the system. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Optimised placement of control and protective devices in distribution networks allows for a better operation and improvement of the reliability indices of the system. Control devices (used to reconfigure the feeders) are placed in distribution networks to obtain an optimal operation strategy to facilitate power supply restoration in the case of a contingency. Protective devices (used to isolate faults) are placed in distribution systems to improve the reliability and continuity of the power supply, significantly reducing the impacts that a fault can have in terms of customer outages, and the time needed for fault location and system restoration. This paper presents a novel technique to optimally place both control and protective devices in the same optimisation process on radial distribution feeders. The problem is modelled through mixed integer non-linear programming (MINLP) with real and binary variables. The reactive tabu search algorithm (RTS) is proposed to solve this problem. Results and optimised strategies for placing control and protective devices considering a practical feeder are presented. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work presents the application of the Decentralized Modal Control method for pole placement in multimachine power systems utilizing FACTS (Flexible AC Transmission Systems), STATCOM (Static Synchronous Compensator) and UPFC (Unified Power Flow Controller) devices. For this, these devices are equipped with supplementary damping controllers, denominated POD ( Power Oscillation Damping), achieving a coordinated project with local controllers (Power System Stabilizers - PSS). Comparative analysis on the function of damping of the FACTS, STATCOM and UPFC is performed using the New England System that has 10 generators, 39 buses and 46 transmission lines. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
An efficient heuristic algorithm is presented in this work in order to solve the optimal capacitor placement problem in radial distribution systems. The proposal uses the solution from the mathematical model after relaxing the integrality of the discrete variables as a strategy to identify the most attractive bus to add capacitors to each step of the heuristic algorithm. The relaxed mathematical model is a nonlinear programming problem and is solved using a specialized interior point method, The algorithm still incorporates an additional strategy of local search that enables the finding of a group of quality solutions after small alterations in the optimization strategy. Proposed solution methodology has been implemented and tested in known electric systems getting a satisfactory outcome compared with metaheuristic methods.The tests carried out in electric systems known in specialized literature reveal the satisfactory outcome of the proposed algorithm compared with metaheuristic methods. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Smart material technology has become an area of increasing interest for the development of lighter and stronger structures that are able to incorporate actuator and sensor capabilities for collocated control. In the design of actively controlled structures, the determination of the actuator locations and the controller gains is a very important issue. For that purpose, smart material modeling, modal analysis methods, and control and optimization techniques are the most important ingredients to be taken into account. The optimization problem to be solved in this context presents two interdependent aspects. The first is related to the discrete optimal actuator location selection problem, which is solved in this paper using genetic algorithms. The second is represented by a continuous variable optimization problem, through which the control gains are determined using classical techniques. A cantilever Euler-Bernoulli beam is used to illustrate the presented methodology.
Resumo:
The aims of this article were to describe the surgical technique of the inferior alveolar nerve lateralization followed by implant installation by means of a clinical report and also to discuss the importance of an adequate surgical and prosthetic planning for atrophic posterior mandible rehabilitation.
Resumo:
Background: Prosthetic rehabilitation of the posterior maxilla with dental implants is often difficult because of proximity to the maxillary sinus and insufficient bone height. Maxillary sinus floor augmentation procedures aim to obtain enough bone with an association between biomaterials and autogenous bone.Purpose: the purpose of this study was to evaluate histomorphometrically two grafting materials (calcium phosphate and Ricinus communis polymer) used in maxillary sinus floor augmentation associated with autogenous bone.Materials and Methods: Biopsies were taken from 10 consecutive subjects (mean age 45 years) 10 months after maxillary sinus floor augmentation. The sinus lift was performed with a mixture of autogenous bone and R. communis polymer or calcium phosphate in a 1:2 proportion. Routine histologic processing and staining with hernatoxylin and eosin were performed.Results: the histomorphometric analysis indicated satisfactory regenerative results in both groups for a mean of bone tissue in the grafted area (44.24 +/- 13.79% for the calcium phosphate group and 38.77 +/- 12.85% for the polymer group). Histologic evaluation revealed the presence of an inflammatory infiltrate of mononuclear prevalence that, on average, was nonsignificant. The histologic sections depicted mature bone with compact and cancellous areas in both groups.Conclusion: the results indicated that both graft materials associated with the autogenous bone were biocompatible, although both were still present after 10 months.
Resumo:
Aim: This article is a case report of a patient in whom the prosthetic planning indicated the necessity of an incisive canal deflation for the correct installation of all implant that is to be osseointegrated.Case Report. In the reopening phase after the bone graft installation, the incisive canal deflation (biopsy of its content) was done and titanium implants were installed with one of them invading the anatomical space occupied previously by the incisive canal. The biopsy analysis showed fragments of the incisive artery and nerve., which are responsible for the anterior upper-tooth pulp, the periodontium vascularization. and the innervation. Front the anastomosis present along with other structures allied with the absence of teeth in the region, there was no detriment to the patient caused by the deflation.Conclusion: Incisive canal deflation is a viable technique in implantology. It can permit ideal prosthetic planning with no detriment to the patient. (Implant Dent 2009;18:473-479)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)