167 resultados para cellulase and modified cellulose
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
We have studied the thermal decomposition of the microcrystalline cellulose and some of its derivative such as pure carboxymethylcellulose (CMCH), phosphate cellulose (FOSCEL) and oxycellulose (OXICEL) and also these same derivatives containing adsorbed cadmium cations. We have used the TG,DTG tecniques in order to determine the quantity of retained cadmium II cations on the surface of these adsorbents.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Two experiments were carried out to evaluate the effect of supplementation with different nitrogenous compounds on the activities of carboxymethil cellulase (CMCase) and glutamate dehydrogenase (GDH). In the first experiment, four treatments were evaluated in vitro: cellulose, cellulose with casein, cellulose with urea, and cellulose with casamino acids. After 6, 12 and 24 hours of incubation, CMCase and GDH activity, pH, and concentrations of ammonia nitrogen (AN) and microbial protein were measured. In the three incubation periods, the concentration of AN was higher when urea was used as a supplemental source of nitrogen. The activity of CMCase was higher with the addition of urea and casamino acids when compared with the control and the casein treatment. Supplementation with casamino acids provided higher GDH activity when compared with the control at 6 hours of incubation. At 12 hours of incubation, the GHD activity was also stimulated by casein. At 24 hours, there was no difference in GHD activity among treatments. In the second experiment, three rumen-fistulated bulls were used for in situ evaluation. Animals were fed Tifton hay (Cynodon sp.) ad libitum. The treatments consisted of control (no supplementation), supplementation with non-protein nitrogenous compounds (urea and ammonium sulphate, 9:1) and supplementation with protein (albumin). In treatments with nitrogenous compound supplementation, 1 g of crude protein/kg of body weight was supplied. The experiment was conducted in a 3 × 3 Latin square design. The measurements were performed at 6, 12 and 24 hours after supplementation. No difference in GDH activity was observed among treatments. The control treatment showed higher CMCase activity when compared with the treatments containing supplemental sources of nitrogen. However, urea supplementation provided higher CMCase activity compared to albumin.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Aqueous dispersions of monoolein (MO) with a commercial hydrophobically modified ethyl hydroxyethyl cellulose ether (HMEHEC) have been investigated with respect to the morphologies of the liquid crystalline nanoparticles. Only very low proportions of HMEHEC are accepted in the cubic and lamellar phases of the monoolein-water system. Due to the broad variation of composition and size of the commercial polymer, no other single-phase regions were found in the quasi-ternary system. Interactions of MO with different fractions of the HMEHEC sample induced the formation of lamellar and reversed hexagonal phases, identified from SAXD, polarization microscopy, and cryogenic TEM examinations. In excess water (more than 90 wt %) coarse dispersions are formed more or less spontaneously, containing particles of cubic phase from a size visible by the naked eye to small particles observed by cryoTEM. At high polymer/MO ratios, vesicles were frequently observed, often oligo-lamellar with inter-lamellar connections. After homogenization of the coarse dispersions in a microfluidizer, the large particles disappeared, apparently replaced by smaller cubic particles, often with vesicular attachments on the surfaces, and by vesicles or vesicular particles with a disordered interior. At the largest polymer contents no proper cubic particles were found directly after homogenization but mainly single-walled defected vesicles with a peculiar edgy appearance. During storage for 2 weeks, the dispersed particles changed toward more well-shaped cubic particles, even in dispersions with the highest polymer contents. In some of the samples with low polymer/MO ratio, dispersed particles of the reversed hexagonal type were found. A few of the homogenized samples were freeze-dried and rehydrated. Particles of essentially the same types, but with a less well-developed cubic character, were found after this treatment. © 2007 American Chemical Society.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study aims to demonstrate how the chemical homogeneity of B cations affects the microstructure and electrical responses of (1-x) PMN-xPT ceramics. Two methodologies were employed to synthesize three different compositions, with x assuming the values 0.10, 0.28, and 0.35. If compared to conventional method, the Ti-modified columbite route, which is characterized by higher B cation homogeneity, leads to PMN-PT powders and ceramics with lower content of PNT pyrochlore phase and, for 0.65PMN-0.35PT composition, minor amount of tetragonal phase is found. Conclusively, PMN-PT ceramics obtained by modified route favors B cations homogeneity, enhancing the dielectric, ferroelectric and piezoelectric properties.
Resumo:
Cellulose can be obtained from innumerable sources such as cotton, trees, sugar cane bagasse, wood, bacteria, and others. The bacterial cellulose (BC) produced by the Gram-negative acetic-acid bacterium Acetobacter xylinum has several unique properties. This BC is produced as highly hydrated membranes free of lignin and hemicelluloses and has a higher molecular weight and higher crystallinity. Here, the thermal behavior of BC, was compared with those of microcrystalline (MMC) and vegetal cellulose (VC). The kinetic parameters for the thermal decomposition step of the celluloses were determined by the Capela-Ribeiro non-linear isoconversional method. From data for the TG curves in nitrogen atmosphere and at heating rates of 5, 10, and 20 A degrees C/min, the E(alpha) and B(alpha) terms could be determined and consequently the pre-exponential factor A(alpha) as well as the kinetic model g(alpha). The pyrolysis of celluloses followed kinetic model g(alpha) = [-ln(1 - alpha)](1.63) on average, characteristic for Avrami-Erofeev with only small differences in activation energy. The fractional value of n may be related to diffusion-controlled growth, or may arise from the distributions of sizes or shapes of the reactant particles.
Resumo:
In order to obtain cellulases that improve the detergency of laundry detergent products, two alkalophilic microorganims, Bacillus sp B38-2 and Streptomyces sp S36-2, were isolated from soil and compost by incubating samples in enrichment culture medium containing CMC and Na2CO3 at pH9.6. It was found that they secrete a constitutive extracellular alkaline carboxymethyl cellulase (CMCase) in high quantity. The maximum enzyme activity was observed between 48hr to 72 hr at 30-degrees-C for the Streptomyces and between 72hr to 96hr at 35-degrees-C for the Bacillus. The optimum pH and temperature of the crude enzyme activities ranged from 6.0 to 7.0 at 55-degrees-C for the Streptomyces and 7.0 to 8.0 at 60-degrees-C for the Bacillus. Two crude CMCases activities were termostable at 45-degrees-C for 1hr and the both crude enzyme activities of the Bacillus as of the Streptomyces were stable at pH 5.0 to 9.0 after pH treatments in various buffer solutions at 30-degrees-C for 24hr.
Resumo:
The understanding of electrostatic interactions is an essential aspect of the complex correlation between structure and function of biological macromolecules. It is also important in protein engineering and design. Theoretical studies of such interactions are predominantly done within the framework of Debye-Huckel theory. A classical example is the Tanford-Kirkwood (TK) model. Besides other limitations, this model assumes an infinitesimally small macromolecule concentration. By comparison to Monte Carlo (MC) simulations, it is shown that TK predictions for the shifts in ion binding constants upon addition of salt become less reliable even at moderately macromolecular concentrations. A simple modification based on colloidal literature is suggested to the TK scheme. The modified TK models suggested here satisfactorily predict MC and experimental shifts in the calcium binding constant as a function of protein concentration for the calbindin D-9k mutant and calmodulin.
Resumo:
Fluoroindate glasses of the following compositions: (40-x)InF3-20ZnF(2)-16BaF(2)-20SrF(2)-2GdF(3)-2NaF-xTmF(3) with x = 1,3 mol% were prepared in a dry box under an argon atmosphere. The absorption spectra at room temperature in the spectral range 350-2200 nm were obtained. The spectra obtained for each sample had similar absorption and only the amplitude of the different bands changed as the concentration of Tm3+. The experimental oscillator strengths were determined from the areas under the absorption bands. Using the standard and modified Judd-Ofelt theory, intensity parameters Ohm(lambda) (lambda = 2,4,6) and (lambda = 2,3,4,5,6), respectively for f-f transitions of Tm3+ ions as well as transition probabilities, branching ratios and radiative lifetimes for each band were determined. The results are compared with those of other glasses described in the literature. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
The use of chemically modified starches is widely accepted in various industries, with several applications. In this research, natural cassava starch granules were treated with standard sodium hypochlorite solution at 0.8, 2.0, and 5.0 g Cl/100 g starch. The native and modified starch samples were investigated by means of the following techniques: simultaneous thermogravimetry-differential thermal analysis, which allowed us to verify the thermal decomposition associated with endothermic or exothermic phenomena; and differential scanning calorimetry that was used to determine gelatinization enthalpy as well as the rapid viscoamylographic analysis that provided the pasting temperature and viscosity. By means of non-contact-atomic force microscopy method and X-ray powder patterns diffractometry, it was possible to observe the surface morphology, topography of starch granules, and alterations in the granules' crystallinity. © 2012 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
The goal of this study was to evaluate the effect of edible coating pre-treatments on the retention of provitamin A during pumpkin drying. The coatings used were based on native and modified maize and cassava starch. To evaluate the effects of these coatings, slices of 'Dry Rajada' pumpkin were dried at 70 °C both with and without starch coatings applied at 30 and 80-90 °C. Carotenoid content was determined through HPLC using a C 30 column. Significant losses (12-15%) of trans-α-carotene and trans-β-carotene were observed when slices were dried without the coating. Significant improvement of carotenoid content was observed for dehydrated slices that were previously coated with a native maize starch solution at 90 °C, as well as with a modified maize starch solution at 30 °C and also with a modified cassava starch solution at 90 °C. The application of these starch solutions probably produced a more uniform film that adhered to the slices, minimizing carotenoid degradation during pumpkin drying and, as a consequence, resulting in a product that can be considered a good source of provitamin A. © 2012 Elsevier Ltd.